MEMBERS OF THE IAU SOFA BOARD (2014)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Bangert</td>
<td>United States Naval Observatory (retired)</td>
</tr>
<tr>
<td>Steven Bell</td>
<td>Her Majesty’s Nautical Almanac Office</td>
</tr>
<tr>
<td>Nicole Capitaine</td>
<td>Paris Observatory</td>
</tr>
<tr>
<td>William Folkner</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Catherine Hohenkerk</td>
<td>Her Majesty’s Nautical Almanac Office (chair)</td>
</tr>
<tr>
<td>Li Jinling</td>
<td>Shanghai Astronomical Observatory</td>
</tr>
<tr>
<td>Brian Luzum</td>
<td>United States Naval Observatory (IERS)</td>
</tr>
<tr>
<td>Zinovy Malkin</td>
<td>Pulkovo Observatory, St Petersburg</td>
</tr>
<tr>
<td>Jeffrey Percival</td>
<td>University of Wisconsin</td>
</tr>
<tr>
<td>Scott Ransom</td>
<td>National Radio Astronomy Observatory</td>
</tr>
<tr>
<td>Patrick Wallace</td>
<td>RAL Space (retired)</td>
</tr>
</tbody>
</table>

Past Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wim Brouw</td>
<td>University of Groningen</td>
</tr>
<tr>
<td>Mark Calabretta</td>
<td>Australia Telescope National Facility (retired)</td>
</tr>
<tr>
<td>Anne-Marie Gontier</td>
<td>Paris Observatory</td>
</tr>
<tr>
<td>George Hobbs</td>
<td>Australia Telescope National Facility</td>
</tr>
<tr>
<td>George Kaplan</td>
<td>United States Naval Observatory</td>
</tr>
<tr>
<td>Dennis McCarthy</td>
<td>United States Naval Observatory</td>
</tr>
<tr>
<td>Skip Newhall</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Jin Wen-Jing</td>
<td>Shanghai Observatory</td>
</tr>
</tbody>
</table>

© Copyright 2013-20 International Astronomical Union. All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.
Contents

1 Preliminaries
 1.1 Introduction ... 1
 1.2 Quick start ... 1

2 The supported coordinate systems
 2.1 Catalog coordinates .. 4
 2.2 Current coordinates 5
 2.3 Observed coordinates 5

3 Design principles

4 Algorithms and accuracy
 4.1 Time scales ... 9
 4.2 Space motion and parallax 9
 4.3 Light deflection .. 10
 4.4 Aberration .. 10
 4.5 Earth attitude and rotation 11
 4.6 Terrestrial position and velocity 11
 4.7 Diurnal aberration and parallax 11
 4.8 Atmospheric refraction 12
 4.9 Overall accuracy ... 12

5 Working via a precomputed context
 5.1 The star-independent astrometry context 13
 5.2 Transformations using the context 13
 5.3 Using the “update time” routines 14

6 Example

7 Gnomonic projection

8 Alphabetical list of routines
 iau_AB ... 28
 iau_AE2HD .. 29
 iau_APCG ... 30
 iau_APCG13 .. 31
 iau_APCI ... 32
 iau_APCI13 .. 33
 iau_APCO ... 34
 iau_APCO13 .. 36
 iau_APCS ... 38
 iau_APCS13 .. 40
 iau_APER .. 41
 iau_APER13 .. 42
 iau_APIO .. 43
 iau_APIO13 .. 44
 iau_ATCI13 .. 46
CONTENTS

iau_ATCIQ 48
iau_ATCIQN .. 49
iau_ATCIQZ .. 51
iau_ATCO13 52
iau_ATIC13 55
iau_ATICQ .. 57
iau_ATICQN 58
iau_ATIO13 60
iau_ATIOQ .. 63
iau_ATOC13 65
iau_ATOI13 68
iau_ATOIQ .. 71
iau_HD2AE 72
iau_HD2PA 73
iau_LD ... 74
iau_LDN .. 75
iau_LDSUN 76
iau_PMPX 77
iau_PMSAFE 78
iau_PVTOB 80
iau_REFCO 81
iau_TPORS 84
iau_TPORV 86
iau_TPSTS 88
iau_TPSTV 89
iau_TPXES 90
iau_TPXEV 91

9 Abbreviations 92

10 References 93

Appendix ... 94
1 Preliminaries

1.1 Introduction

SOFA stands for Standards Of Fundamental Astronomy. The SOFA software is a collection of Fortran 77 and ANSI C subprograms that implement official IAU algorithms for fundamental-astronomy computations. At the present time the SOFA software comprises 164 astronomy routines supported by 55 utility (mainly vector/matrix) routines. The core documentation for the SOFA collection consists of classified and alphabetic lists of subroutine calls plus detailed preamble comments in the source code of individual routines.

The present document looks at a selection of SOFA routines that deal with the chain of astrometric transformations linking (i) star data from a catalog and (ii) the observed direction of the incoming radiation. The scheme is shown in Figure 1 on page 2. The document provides a tutorial introduction and describes the main astrometric reference systems used by astronomers. Short examples demonstrate how to call SOFA routines to perform the sorts of transformations needed in applications that have to deal with the directions to celestial targets.

1.2 Quick start

Many application developers will be able to read this section of the document and ignore the rest. Some may need only one or two routines, namely iau_ATCO13 or iau_ATCI13 and/or iau_ATIO13, and these can simply be looked up in the alphabetical listing (Section 8).

Figure 1 shows the chain of transformations that link the catalog coordinates of a star to the direction in which the star is seen by an observer. The SOFA astrometry routines support all of the transformations in this chain.\footnote{For simple applications, routines iau_AE2HD and iau_HD2AE carry out straightforward transformations between \([h, \delta]\) and \([Az, El]\). A companion routine iau_HD2PA provides parallactic angle.}

Many applications will not need the whole chain. In particular it is often convenient to deal separately with the geocentric and topocentric segments, and the SOFA routines facilitate this approach. The following call performs the transformation from a star’s catalog entry to its apparent coordinates at a given date, called CIRS \([\alpha, \delta]\) in Figure 1:

\[
\text{CALL iau_ATCI13 (RC, DC, PR, PD, PX, RV, DATE1, DATE2, : RI, DI, EO)}
\]

RC,DC are the ICRS right ascension and declination at the catalog epoch, in radians; PR,PD are the proper motions \((\dot{\alpha}, \dot{\delta})\) in radians per TT Julian year, PX is the parallax in arcseconds; and RV is the radial velocity in km/s. DATE1+DATE2 is the TT Julian Date. The results RI,DI are the \([\alpha, \delta]\) in the celestial intermediate reference system (CIRS), in radians. EO is the equation of the origins, and the classical geocentric apparent place is RI=EO,DI.

The CIRS \([\alpha, \delta]\) RI,DI can be transformed into the observed direction, which is where a (mechanically and optically perfect) telescope would be pointed to see the star, using the following call:
The chain of astrometric transformations

The diagram shows how the catalog entry for a star and the line of sight for a terrestrial observer are linked. For many applications, for example space observers, only a portion of the sequence is needed. Moreover, for high precision work the geocentric stage is omitted, the diurnal aberration and parallax having been subsumed into the main aberration and parallax calculations.
UTC1+UTC2 is the UTC, in a special SOFA form that is obtained by calling the `iau_DTF2D` routine, and DUT1 is UT1−UTC. ELONG, PHI are the site longitude and geodetic latitude in radians and HM is the height above the WGS84 reference ellipsoid in meters. XP, YP are the polar motion in radians. PHPA, TC, RH are the ambient air conditions: pressure (HPa or mB), Celsius temperature, and relative humidity (RH=1.0 means 100%). WL is the effective color in μm; values above 100 are treated as radio. The results AOB2, ZOB2, HOB2, DOB2, ROB2 are different ways of expressing the observed direction; all are angles in radians. AOB is azimuth, reckoned north through east; ZOB is zenith distance; HOB is hour angle; DOB is declination; and ROB is right ascension (CIO based). J is a status value, normally zero. For convenience, the entire transformation from catalog to observed can be applied in a single call:

```c
CALL iau_ATI013 ( RI, DI, UTC1, UTC2, DUT1, ELONG, PHI, HM, 
:          XP, YP, PHPA, TC, RH, WL, 
:          AOB, ZOB, HOB, DOB, ROB, J )
```

The three routines just introduced, namely `iau_ATCI13`, `iau_ATI013` and `iau_ATCO13`, and perhaps also their inverses, `iau_ATIC13`, `iau_ATOI13` and `iau_ATOC13`, are all that will be needed by typical applications. The remainder of this document discusses more specialized aspects, including accuracy, computational efficiency, and the individual transformations in Figure 1.
2 The supported coordinate systems

The positions of astronomical targets need to be expressed in different ways for different purposes. In the case of stars, and a terrestrial observer, three distinct needs have to be satisfied:

- A star catalog must describe the position in a way that is valid over a long period of time. The usual method is to provide the direction at a specified epoch in a coordinate system that is fixed relative to the distant background, supplemented with information about the star’s space motion that allow the position to be extrapolated to any given date.
- Terrestrial observers need coordinates that are independent of location on the Earth, that are correct for the current date, and that are in a coordinate system convenient for local predictions.
- Pointing a telescope or interpreting observations requires knowledge of the ever-changing direction of the star as seen from the observing site.

The main purpose of the SOFA astrometry routines is to carry out transformations between these three types of coordinates, which we shall refer to here as catalog, current and observed, respectively. For space observers, only a portion of the chain is relevant, from ICRS to the Geocentric Celestial Reference System (GCRS). Other applications, such as groundbased interferometers, may stop at topocentric coordinates, omitting refraction.

2.1 Catalog coordinates

A star catalog can be constructed using any coordinate system that is fixed relative to the cosmological background: the choices of pole and longitude zero-point are essentially arbitrary. For some purposes galactic coordinates are convenient, while for some classical applications ecliptic coordinates are a natural choice, based on the mean (i.e. precessing) ecliptic pole and equinox at some particular epoch. Most historical star catalogs have used a reference system based on the mean pole and equinox for a specified standard epoch such as B1950.0 or J2000.0. The choice is convenient for casual use as the tabulated mean right ascensions and declinations are sufficiently close to current \([\alpha, \delta]\) for rough (within a degree or two) predictions of observed direction without the bother of applying precession corrections.

The SOFA astrometry routines support just one catalog system, namely the International Celestial Reference System (ICRS).\(^2\) This can be seen as the start of the chain shown in Figure 1.

When the ICRS was set up, a completely arbitrary orientation of the coordinate axes could have been chosen. However, to ease the transition, the new system was nominally oriented to

\(^2\)Other SOFA routines offer limited support for two other reference systems: \texttt{iau_FK52H}, \texttt{iau_FK5HIP}, \texttt{iau_FK5HZ}, \texttt{iau_H2FK5} and \texttt{iau_HFK5Z} link the FK5 system to the Hipparcos realization of ICRS, while \texttt{iau_FK425}, \texttt{iau_FK45Z}, \texttt{iau_FK524} and \texttt{iau_FK54Z} cover the transition between FK5 and its predecessor FK4. It must be noted that the latter is more than a simple precessional change between epochs 1950.0 and 2000.0, involving the “E-terms of aberration” and the influence of galactic rotation on the proper motion system. For ordinary users, the practical consequence is that in order to use B1950.0 mean places found in pre-1984 publications, a call to \texttt{iau_FK45Z} is needed in order to convert each such position to FK5/ICRS.
2.2 Current coordinates

match J2000.0 mean \([\alpha, \delta]\): the accuracy achieved was of order 25 milliarcseconds (mas). The two systems are sufficiently close that for many everyday applications the distinction between the two can be ignored. However, for precise applications, such as interferometry, other SOFA routines provide high-accuracy transformations between mean J2000.0 \([\alpha, \delta]\) (and also the FK5 realization) and ICRS.

Where ICRS coordinates are the end point rather than the starting point, they are referred to as \textit{“astrometric”}. Such positions clearly have no space motion or parallax information and are indistinguishable from the coordinates of a cosmological source lying in the same apparent direction on the date in question.\(^3\)

2.2 Current coordinates

The \textquote{“current”} coordinates are the intermediary stage between a star’s catalog entry and the direction seen by the observer. The SOFA astrometry routines use the Celestial Intermediate Reference System (CIRS) for this purpose. The pole is the celestial intermediate pole (CIP), and the \(\alpha\) zero-point the kinematically-defined celestial intermediate origin (CIO). In this system, hour angle \(h\) is related to right ascension through the local Earth rotation angle: \(h = \theta - \alpha\), where \(\theta\) is \(\text{ERA} + \lambda\) and \(\lambda\) is longitude (east positive).

The classical system, also supported by the SOFA routines but in an ancillary capacity, is geocentric apparent place. This has the same pole as CIRS, namely the CIP, and hence declinations in the two systems are the same. However, the \(\alpha\) zero-point in this case is the equinox, which is defined geometrically as the ascending node of the ecliptic of date on the CIP equator. The formula linking \(h\) and \(\alpha\) is the same as for CIRS, namely \(h = \theta - \alpha\), except that now \(\theta\) is the local apparent sidereal time.

Both the classical and CIRS methods yield identical hour angles. But the advantage of CIRS is that precession-nutation affects only the orientation of the Earth’s axis: the \(\alpha\) zero-point is an entirely separate matter. In the classical approach, the \(\alpha\) zero-point undergoes a complicated and comparatively rapid motion, only to be cancelled out by the inclusion in the Greenwich apparent sidereal time (GST) formula of a complicated set of polynomial and Poisson terms. The CIRS \(\alpha\) zero-point is almost stationary\(^4\) and the Earth rotation measure, in this case \(\text{ERA}\), is just a linear transformation of universal time UT1. The bridge between the classical and CIRS systems is the \textit{equation of the origins}, which is \(\text{ERA} - \text{GST}\) or equivalently \(\alpha_{\text{CIRS}} - \alpha_{\text{apparent}}\); its value is returned by several of the SOFA astrometry routines in case it is needed.

2.3 Observed coordinates

The \textquote{“observed”} \([az, alt]\) means the direction in which a mechanically and optically perfect theodolite\(^5\) would be pointed in order to see the target. This is the natural coordinate system

\(^3\)The SOFA astrometry routines implement astrometric place quite literally, and when transforming them to current coordinates includes light deflection as well as stellar aberration. Applications that deal with targets in the inner solar system will need to cope with the case of transits across the Sun, where very large spurious deflections will occur, corresponding to sources lying \textit{behind} the Sun.

\(^4\)Throughout the 20\(^{th}\) and 21\(^{st}\) centuries the CIO remains within \(0.1^\circ\) of the ICRS meridian.

\(^5\)aligned to ITRS north and the geodetic vertical
in which to express the observed position as it differs from the topocentric, \textit{i.e.} unrefracted, position only by a change in altitude. However, it is just as valid to apply the standard altaz-to-equatorial transformation and so obtain observed \([h, \delta]\), and then to combine this with an Earth rotation measure to yield an observed \([\alpha, \delta]\). In the \([h, \delta]\) and \([\alpha, \delta]\) cases the direction is as seen by a mechanically and optical perfect equatorial telescope, with its polar axis aligned to the CIP.

The SOFA astrometry routines support all of these different options. However, instead of altitude, zenith distance is returned. The main reason for this is to remove any ambiguity over which horizon (apparent, astronomical, geometric \textit{etc}.\) is being used, making it clear that such distinctions are the responsibility of the application. Another reason is to sidestep the interchangeable use of \textquotedblleft altitude\textquotedblright\ and \textquotedblleft elevation\textquotedblright: the former is considered more correct but the latter is more common, especially in radio astronomy.
3 Design principles

The SOFA astrometry routines design principles are these:

1. The transformations that are most commonly needed should be achievable in a single call.
2. Where practical, the highest standards of accuracy should be available...
3. ...but this must not be at the expense of ease of use.
4. Computational efficiency matters but should not complicate applications where this aspect is unimportant.

The ways these needs are addressed are as follows:

1. The transformations catalog to current, current to observed, and catalog to observed, plus inverses, are each implemented as a single routine.
2. There are two sets of routines. One set uses the latest SOFA models; the other accepts values (for example Earth ephemerides or refraction constants) that the user supplies.
3. Rigorous algorithms, consistent with special and general relativity, are used. However, aspects that only a specialist would need and that would complicate the programming interfaces unacceptably (for example requiring detailed solar system ephemerides or weather information) are not provided for. Even then, the interfaces are flexible enough to allow expert users to overcome these limitations.
4. To achieve computational efficiency, the problem is separated into two components: (i) populating a context containing star-independent parameters and (ii) using the precomputed context to carry out a specific transformation quickly. Thus in a case where the same transformation is to be applied to many different stars, (i) is carried out just once and (ii) is applied to the stars one by one. In a case where efficiency is not important, a single routine is called that simply performs (i) followed by (ii).

The single-call transformations using standard SOFA models are the following:

\[
\begin{align*}
\text{iau_ATCI13} & \quad \text{ICRS to CIRS, 2013 models} \\
\text{iau_ATCO13} & \quad \text{ICRS to observed, 2013 models} \\
\text{iau_ATIC13} & \quad \text{CIRS to ICRS astrometric, 2013 models} \\
\text{iau_ATIO13} & \quad \text{CIRS to observed, 2013 models} \\
\text{iau_ATOC13} & \quad \text{observed to ICRS astrometric, 2013 models} \\
\text{iau_ATOI13} & \quad \text{observed to CIRS, 2013 models}
\end{align*}
\]

There are no counterparts for the case where the user wishes to substitute his own models. Instead he simply sets up the context himself before calling the appropriate “quick” transformation.

To populate the context using standard SOFA models, a range of routines is provided. The choice depends on the observer (terrestrial, geocentric, space) and which segment of the transformation chain is required:
In addition, there is a routine that updates only the Earth rotation angle. This is useful in applications such as telescope control, where it is acceptable to update the catalog to current transformation less frequently than the Earth rotation:

iau_APER13
astrometry parameters: update time, 2013

There is a full set of counterparts that accept models supplied by the user:

iau_APCG
astrometry parameters, ICRS-GCRS, geocenter

iau_APCI
astrometry parameters, ICRS-CIRS

iau_APCO
astrometry parameters, ICRS-observed

iau_APCS
astrometry parameters, ICRS-GCRS, space observer

iau_APIO
astrometry parameters, CIRS-observed

and:

iau_APER
astrometry parameters: update time

The above are all the routines that populate the context. The routines that use the context to perform an individual transformation are as follows:

iau_ATCIQ
quick ICRS to CIRS

iau_ATCIQN
quick ICRS to CIRS, multiple deflections

iau_ATCIQZ
quick astrometric ICRS to CIRS

iau_ATICQ
quick CIRS to ICRS astrometric

iau_ATICQN
quick CIRS to ICRS astrometric, multiple deflections

iau_ATIOQ
quick CIRS to observed

iau_ATOIQ
quick observed to CIRS

The remaining routines, less likely to be called directly by applications, are as follows:

iau_AB
stellar aberration

iau_LD
light deflection by a single solar-system body

iau_LDN
light deflection by multiple solar-system bodies

iau_LDSUN
light deflection by the Sun

iau_PMPX
proper motion and parallax

iau_PMSAFE
proper motion with low-parallax precautions

iau_PVTOB
position/velocity of terrestrial station

iau_REFCO
refraction constants for given ambient conditions
4 Algorithms and accuracy

The SOFA astrometry routines use modern and rigorous models as far as possible, and are capable of reaching microarcsecond accuracy in favourable cases. The one major exception is atmospheric refraction, for which definitive models do not exist.

Notes on some of the transformation steps shown in Figure 1 follow; for references see Page 93. For a definitive description of the algorithms is the source code itself should be consulted.

4.1 Time scales

The different SOFA astrometry routines require times to be expressed in the appropriate time scale, which can be TDB, UTC or in one case UT1.

Although many of the routines ask for barycentric dynamical time, TDB, it is always acceptable to use instead the more accessible terrestrial time, TT. The difference is always less than 2 ms, wholly negligible for computing aberration and precession for the types of application under consideration here. TDB is complicated and expensive to compute (see iau_DTDB) and the recommendation is simply to use TT instead.

However, the distinction between UTC and TT/TDB, currently over a minute, is significant, at least for applications that require milliarcsecond precision or better.

Where observed place is concerned, universal time must of course be used, and this means knowing not just UTC but the current UT1−UTC, which is available from IERS bulletins. In the case of iau_APER13, UT1 itself is required rather than UTC.

4.2 Space motion and parallax

Starting with the star’s catalog data, the routine iau_PMPX computes its coordinate direction by allowing for proper motion and parallax.

A conventional non-relativistic proper motion is used, which assumes constant speed through space. The algorithm is an adaptation of Eq. (7.24) in Urban & Seidelmann (2013). For a star with non-zero radial velocity, there is a foreshortening effect caused by the changing light time, so that the star’s path is not as given by the conventional algorithm. However, once the changing light time is applied to the extrapolation interval, the effect cancels out. Consequently, the simple algorithm in fact delivers the correct result.

The algorithm is conveniently tolerant of physically impossible star data, in particular combinations of small parallax and finite proper motion that imply superluminal speed. It also agrees to microarcsecond accuracy with a fully relativistic treatment. However, should an application prefer the latter, suitable code is provided in Appendix A.

One departure from normal practice is that the proper motion calculation includes a first-order correction for the Rømer effect. This is the small modulation (annual for terrestrial observers) of the proper motion caused by the changing light time. The effect exceeds 100 μas only in the case of Barnard’s Star.
4.3 Light deflection

The deflection of the light from the target as it passes through the gravitational field of a solar-system body is calculated by the routine \texttt{iau_LD}. Applying the total of all such deflections to the coordinate direction yields natural direction. For typical applications only the Sun (at most) need be considered, and, for convenience, a separate routine is provided for that purpose: \texttt{iau_LDSUN}. A further routine, \texttt{iau_LDN}, provides a deflection calculation for multiple solar-system bodies, for example Sun + Jupiter + Saturn.

The routine \texttt{iau_LD} is quite general. The algorithm is based on Eq. (70) in Klioner (2003) and Eq. (7.63) in Urban & Seidelmann (2013), with some rearrangement to minimize the impact of machine precision. Its arguments include (among other things) the mass of the body and full details of the geometrical arrangement. The latter means the routine is valid for solar-system targets as well as distant objects, which is not strictly true for either \texttt{iau_LDSUN} or \texttt{iau_LDN}.

The precise calculation of light deflection close to a solar-system body is complicated, and the SOFA routines do not attempt the complete treatment set out in Klioner (2003). However, effects such as quadrupole field can be allowed for by making an ad hoc adjustment to the mass argument, based on the relative disposition of the body and the light ray.

In an advanced application where multiple gravitating bodies are being included, the routine \texttt{iau_LD} can be called for each body in succession (in the order in which the light passed the different bodies on its way to the observer, though this is not critical). Alternatively, for stars and other distant targets the \texttt{iau_LDN} routine can be called, with the data for the successive bodies supplied in an array. The calculation relies on accurate ephemerides, at least when the target and deflecting body are close together in the sky, and the application needs access to a suitable solar-system ephemeris such as DE405.

The algorithm used by \texttt{iau_LD} is merely an analytical approximation: a rigorous treatment would involve numerical integration along the path of the light-ray and is impractical. Consequently, a question arises concerning what time to use when interrogating the body’s ephemeris. A convenient option that gives good results is to use the time at which the light passed closest to the body, and this is what \texttt{iau_LD}, does, using the body’s barycentric velocity at the time of observation to back-track its position by the time since the light passed by (but only if the source lies behind the body). In the case of \texttt{iau_LDSUN}, this step is omitted, in accordance with convention. This is justifiable because the Sun’s barycentric velocity is small and because in grazing cases other approximations dominate (at the 0.5 mas level). However, if \texttt{iau_LDN} used, the Sun is treated in the same way as the planets, and so the light-time correction is applied, making at most a 0.1 mas difference compared with the \texttt{iau_LDSUN} result.

4.4 Aberration

Stellar aberration can be applied to the natural direction using the \texttt{iau_AB} routine. The result is called the proper direction and is the direction in which the radiation is seen. The algorithm is based on Eq. (7.40) in Urban & Seidelmann (2013), but with two improvements. First, rigorous rather than approximate normalization is applied at the end; second, the 0.4 mas gravitational potential term from Eq. (7) in Klioner (2003) is added, evaluated for the Sun alone. The
algorithm is capable of sub-microarcsecond accuracy. However, the limitation in practice is likely to be the accuracy of the supplied Earth (or observer) velocity. For example, if the SOFA \texttt{iau_EPV00} routine is used, errors of up to 5 \(\mu\)as can occur.

If the velocity of the geocenter is specified, the call to \texttt{iau_AB} computes the conventional annual aberration, to which diurnal aberration will later be added as part of the topocentric calculation. If instead the observer’s velocity is specified, the entire aberration is computed in one go and no diurnal aberration will be needed. The latter approach is in fact more rigorous and avoids spurious cross terms that can exceed 30 \(\mu\)as. (Another 30 \(\mu\)as effect that is conventionally neglected is diurnal parallax, and this can also be avoided by working directly to the observer rather than using geocentric coordinates as an intermediate stage.)

4.5 Earth attitude and rotation

The orientation of the CIRS in the GCRS requires knowledge of both the pole coordinates and the location of the \(\alpha\) zero-point. The pole is the CIP, and its position includes the offset at J2000.0, called \textit{frame bias}, the accumulated precession from that epoch to date, and the current nutation. The SOFA astrometry routines use the CIO as the \(\alpha\) zero-point. In the completely general SOFA astrometry routines such as \texttt{iau_APCO}, the orientation is specified as the CIP coordinates \((X,Y)\) and the value of the CIO locator \(s\). Rigorous vector methods are used throughout.

In the routines that for convenience use current SOFA models, such as \texttt{iau_APC013}, the bias and precession come from IAU 2006 models and the nutation is IAU 2000A. The IAU 2006/2000A models are (at present) accurate to 1 mas, limited by the unmodeled free core nutation, an accuracy that is adequate for most applications. Applications that require the utmost accuracy should instead call \texttt{iau_APCO} etc. and supply CIP \((X,Y)\) using data published by the Internation Earth Rotation and Reference systems Service (IERS).

4.6 Terrestrial position and velocity

The position and velocity of the terrestrial observer in the CIRS are calculated using the \texttt{iau_PVTOB} routine. This is called even by the general routines, not just those using SOFA models, as the effects of small differences such as choice of reference ellipsoid are always too small to matter: \texttt{iau_PVTOB} assumes the WGS84 ellipsoid and the Earth rotation rate from the IAU 2000 ERA formula. However, the use of the \texttt{iau_SP00} routine to compute the TIO locator \(s'\) is reserved for the SOFA-model routines. Polar motion is taken into account, and along with \(s'\) is applied using rigorous vector methods.

4.7 Diurnal aberration and parallax

Where the user has elected to break the chain at the CIRS stage, diurnal aberration is applied separately using a simple first-order vector expression and diurnal parallax is neglected. The end-to-end ICRS \(\leftrightarrow\) observed transformations eliminate the intermediate step, adding the observer’s position and velocity to the Earth’s and eliminating these compromises.
4.8 Atmospheric refraction

As mentioned earlier, no definitive models for atmospheric refraction exist. The available models differ in accuracy, computational overheads, wavelength coverage, performance in different zenith-distance ranges and convenience of use. The simple model used by SOFA in the routines \texttt{iau_REFCO}, \texttt{iau_ATIOQ} and \texttt{iau_ATOIQ} is concise, fast and more than accurate enough for most practical applications. However, more-demanding users have the option to substitute something better suited to their particular needs.

The SOFA model uses the familiar $A \tan \zeta + B \tan^3 \zeta$ formula, but with special measures to improve the results near the horizon. The constants A and B are obtained by calling \texttt{iau_REFCO}; the arguments are the pressure, temperature and relative humidity at the observer, plus the observing wavelength. Sufficiently long wavelengths (greater than 0.1 mm) are interpreted as radio.

In tests over a wide range of trial conditions, and down to $\zeta = 75^\circ$, the accuracy of the algorithm was compared with a more rigorous raytracing method. In the optical/IR the results were better than 10 mas RMS and about 60 mas worst case, while in the radio the figures were better than 50 mas RMS and about 300 mas worst case.

For more on the refraction-constant algorithm and detailed test results, see the \texttt{iau_REFCO} description on Page 81.

4.9 Overall accuracy

The accuracy delivered by the SOFA routines depends on circumstances:

- All transformations that involve observed place are limited by the refraction predictions. This is likely to be true even if better refraction constants are supplied than those from the very basic model used by \texttt{iau_REFCO}. Even the best available refraction models probably in practice struggle to achieve 0".1 $\tan \zeta$.

- For transformations not involving refraction, the IAU 2000A/2006 precession-nutation model limits the accuracy to about 1 mas at the time of writing.

- Over much of the sky, SOFA’s predictions of light deflection by the Sun are accurate to 1 μas. Close to the Sun the errors may approach the 0.5 mas level. Close to other solar-system bodies, unmodeled deflections of several milliarcseconds can arise, for example over 16 mas at Jupiter’s limb. This can be avoided by using the routines \texttt{iau_ATCIQN}, \texttt{iau_ATICQN} and \texttt{iau_LDN}.

- If the \texttt{iau_EPV00} routine is used for the Earth ephemeris, errors in the aberration predictions of up to 5 μas can occur. Note that an error in the observer’s speed of 1.5 mm/s gives an aberration error of about 1 μas.

Care is taken to ensure that given transformations and their inverses match to high precision. Where this is not achievable simply through rigor (by the use of vector methods for example) iteration is used. Without refraction, the inversions are self-consistent to better than 1 μas all over the celestial sphere. With refraction included, consistency falls off at high zenith distances, but is still better than 0".05 at $\zeta = 85^\circ$.
5 Working via a precomputed context

The SOFA astrometry routines operate in two stages:

- First a set of star-independent parameters is set up;
- then this pre-computed context is used to perform the required transformations for a particular target.

Internally, this is how the convenient one-call routines work, but the technique can also be used at the application level. The usual reason to do so is that there is a large number of targets to be transformed and the overheads of repeating onerous computations (such as evaluation of lengthy nutation series) are best avoided. However, another advantage of the scheme is flexibility, giving access to more transformation options than the pre-packaged single calls cover. An example is where the user has access to more accurate data (Earth ephemeris, precession-nutation, refraction) than is available merely by evaluating standard SOFA models.

5.1 The star-independent astrometry context

The context, which is simply a DOUBLE PRECISION array, provides for the whole chain of astrometric transformations ICRS \leftrightarrow GCRS \leftrightarrow CIRS \leftrightarrow observed. However, it is not necessary to populate the context in full when only a partial transformation is needed. The location of the observer also affects how much of the content is needed. The following table shows all of the various options:

<table>
<thead>
<tr>
<th>routines</th>
<th>observer</th>
<th>transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>iau_APIO13</td>
<td>terrestrial</td>
<td>CIRS \leftrightarrow observed</td>
</tr>
<tr>
<td>iau_APCI13</td>
<td>terrestrial</td>
<td>ICRS \leftrightarrow CIRS</td>
</tr>
<tr>
<td>iau_APCG13</td>
<td>geocentric</td>
<td>ICRS \leftrightarrow GCRS</td>
</tr>
<tr>
<td>iau_APCS13</td>
<td>space</td>
<td>ICRS \leftrightarrow GCRS</td>
</tr>
<tr>
<td>iau_APCU13</td>
<td>terrestrial</td>
<td>ICRS \leftrightarrow observed</td>
</tr>
<tr>
<td>iau_APER13</td>
<td>terrestrial</td>
<td>update Earth rotation alone</td>
</tr>
</tbody>
</table>

As set out in Figure 1, the transformation from ICRS to GCRS covers space motion, parallax, light deflection, and aberration; that from GCRS to CIRS comprises frame bias and precession-nutation; that from CIRS to observed takes account of Earth rotation, polar motion, diurnal aberration and parallax (unless subsumed into the ICRS \leftrightarrow GCRS transformation), and atmospheric refraction. Those routines with names ending in “13” use contemporary SOFA models to compute the various ephemerides. The others accept ephemerides supplied by the caller.

5.2 Transformations using the context

After populating the context, the transformation for each target is carried out as follows:
Transformations not shown are unlikely to be needed and/or can be carried out using other SOFA routines, for example those that deal with precession-nutation.

The internals of the context array are listed in the source code. However, applications should not make direct use of this information, in case the design changes in the future.

5.3 Using the “update time” routines

The routines `iau_APER` and `iau_APER13` update only part of the context array, namely the Earth rotation angle. In ground-based applications such as telescope control systems, this allows the efficient generation of a stream of positions as time progresses. It is not rigorous, because everything is moving, but the Earth rotation is by far the fastest effect, at about 15° per hour.

The rate at which the other contributions are changing are several orders of magnitude less: the maximum hourly changes in diurnal aberration, annual aberration and precession are about 80 mas, 15 mas and 6 mas respectively, which is negligible. It is therefore commonplace to perform the ICRS → CIRS transformation (or the classical equivalent, mean → apparent) just once, for target acquisition, and to leave it fixed for subsequent tracking. Even advanced control systems for large telescopes rarely bother to recompute the full transformation more often than once a minute or so.
6 Example

Starting with catalog data for a star, the demonstration program listed below performs a whole series of transformations, namely:

1. ICRS to CIRS.
2. The reverse, giving the astrometric place.
3. Astrometric place to CIRS.
4. Geocentric apparent place via the equation of the origins.
5. CIRS to topocentric, i.e. CIRS to observed but with zero air pressure.
6. CIRS to observed.
7. ICRS to observed in a single call.
8. ICRS to CIRS using JPL DE405 for the Earth ephemeris.
9. The same but including light deflection by Jupiter and Saturn.
10. The reverse, to check agreement with Step 2.

The code is complete, ready to compile and run, and may be a useful template for further experiments. A real-life application would of course be far simpler than this quite complicated demonstration, with the use of SOFA astrometry routines limited to perhaps a single call.

The test circumstances are as follows. It must be stressed that all the numbers have been adopted purely for the sake of the demonstration and have no other significance. Although quite representative of real data, all of the values used must be assumed to be fictitious.

The site coordinates are:

Latitude and longitude = S 15° 57′ 42″ 8 W 5° 41′ 54″ 2
Height above the reference ellipsoid = 625m

Here are the catalog data for the test star:

ICRS [α, δ] = 14h 34m 16° 81183′ −12° 31′ 10″ 3965″
proper motions: \(\mu_\alpha = -354.45 \text{ mas/y}, \quad \mu_\delta = +595.35 \text{ mas/y} \)
parallax = 0″ 16499
radial velocity (recession speed) = 0 km/s

The date and time are:
The Earth orientation parameters are:

- polar motion: \(x = +50.995 \text{ mas}, \quad y = +376.723 \text{ mas} \)
- \(\text{UT1} - \text{UTC} = +155.0675 \text{ ms} \)

and also:

- corrections to IAU 2000A CIP: \(dx = +0.269 \text{ mas}, \quad dy = -0.274 \text{ mas} \)

The demonstration code follows.

```plaintext
IMPLICIT NONE

DOUBLE PRECISION AS2R
PARAMETER ( AS2R = 4.848136811095359935899141D-6 )

DOUBLE PRECISION ASTROM(30)

INTEGER J

DOUBLE PRECISION PHI, ELONG, HM, PHPA, TC, RH, WL,
: UTC1, UTC2, TAI1, TAI2, TT1, TT2, XP, YP, DUT1,
: DX, DY, RC, DC, PR, PD, PX, RV,
: EQ, RI, DI, RCA, DCA, RA, DA,
: AOT, ZOT, HQT, DOT, ROT, AOB, ZOB, HOB, DOB, ROB,
: PVH(3,2), PVB(3,2), R(3,3), X, Y, S, E(8,3)

DOUBLE PRECISION iau_ANP, iau_S06

* Site longitude, latitude (radians) and height above the geoid (m).
CALL iau_AF2A ( '-', 5, 41, 54.2D0, ELONG, J )
IF ( J .NE. 0 ) STOP
CALL iau_AF2A ( '-', 15, 57, 42.8D0, PHI, J )
IF ( J .NE. 0 ) STOP
HM = 625D0

* Ambient pressure (HPa), temperature (C) and relative humidity (frac).
PHPA = 952D0
TC = 18.5D0
RH = 0.83D0

* Effective color (microns).
WL = 0.55D0
```
UTC date.
 CALL iau_DTF2D ('UTC', 2013, 4, 23, 15, 43.55D0, :
 UTC1, UTC2, J)
 IF (J .NE. 0) STOP

TT date.
 CALL iau_UTCTAI (UTC1, UTC2, TAI1, TAI2, J)
 IF (J .NE. 0) STOP
 CALL iau_TAITT (TAI1, TAI2, TT1, TT2, J)
 IF (J .NE. 0) STOP

EOPs: polar motion in radians, UT1-UTC in seconds.
 XP = 50.995D-3 * AS2R
 YP = 376.723D-3 * AS2R
 DUT1 = 155.0675D-3

Corrections to IAU 2000A CIP (radians).
 DX = 0.269D-3 * AS2R
 DY = -0.274D-3 * AS2R

Star ICRS RA,Dec (radians).
 CALL iau_TF2A (' ', 14, 34, 16.81183D0, RC, J)
 IF (J .NE. 0) STOP
 CALL iau_AF2A ('-', 12, 31, 10.3965D0, DC, J)
 IF (J .NE. 0) STOP
 CALL REPRD ('ICRS, epoch J2000.0:', RC, DC)

 PR = ATAN2 (-354.45D-3 * AS2R, COS(DC))
 PD = 595.35D-3 * AS2R

Parallax (arcsec) and recession speed (km/s).
 PX = 164.99D-3
 RV = 0D0

ICRS to CIRS (geocentric observer).
 CALL iau_ATCI13 (RC, DC, PR, PD, PX, RV, TT1, TT2, RI, DI, EO)
 CALL REPRD ('catalog -> CIRS:', RI, DI)

CIRS to ICRS (astrometric).
 CALL iau_ATIC13 (RI, DI, TT1, TT2, RCA, DCA, EO)
 CALL REPRD ('CIRS -> astrometric:', RCA, DCA)

ICRS (astrometric) to CIRS (geocentric observer).
 CALL iau_ATCI13 (RCA, DCA, OD0, OD0, OD0, OD0, TT1, TT2,
 : RI, DI, EO)
 CALL REPRD ('astrometric -> CIRS:', RI, DI)
* Apparent place.
 RA = iau_ANP (RI - EO)
 DA = DI
 CALL REPRD ('geocentric apparent:', RA, DA)

* CIRS to topocentric.
 CALL iau_ATIO13 (RI, DI, UTC1, UTC2, DUT1, ELONG, PHI, HM,
 XP, YP, ODO, ODO, ODO, ODO,
 AOT, ZOT, HUT, DOT, ROT, J)
 IF (J .NE. 0) STOP
 CALL REPRD ('CIRS -> topocentric:', ROT, DOT)

* CIRS to observed.
 CALL iau_ATIO13 (RI, DI, UTC1, UTC2, DUT1, ELONG, PHI, HM,
 XP, YP, PHFA, TC, RH, WL,
 AOB, ZOB, HOB, DOB, ROB, J)
 IF (J .NE. 0) STOP
 CALL REPRD ('CIRS -> observed:', ROB, DOB)

* ICRS to observed.
 CALL iau_ATCO13 (RC, DC, PR, PD, PX, RV, UTC1, UTC2, DUT1,
 ELONG, PHI, HM, XP, YP, PHFA, TC, RH, WL,
 AOB, ZOB, HOB, DOB, ROB, EO, J)
 IF (J .NE. 0) STOP
 CALL REPRD ('ICRS -> observed:', ROB, DOB)

* ICRS to CIRS using some user-supplied parameters.

* JPL DE405 barycentric Earth ephemeris.
 CALL iau_EPV00 (TT1, TT2, PVH, PVB, J)
 IF (J .NE. 0) STOP
 PVB(1,1) = -0.9741704366519668D0
 PVB(2,1) = -0.2115201000882231D0
 PVB(3,1) = -0.0917583114068277D0
 PVB(1,2) = 0.0036436589347388D0
 PVB(2,2) = -0.0154287318503146D0
 PVB(3,2) = -0.0066892203821059D0

* IAU 2000A CIP.
 CALL iau_PNM00A (TT1, TT2, R)
 CALL iau_BPN2XY (R, X, Y)

* Apply IERS corrections.
 X = X + DX
 Y = Y + DY

* SOFA CIO locator.
S = iau_S06 (TT1, TT2, X, Y)

* Populate the context.
 CALL iau_APCI (TT1, TT2, PVB, PVH, X, Y, S, ASTROM)

* Carry out the transformation and report the results.
 CALL iau_ATCIQ (RC, DC, PR, PD, PX, RV, ASTROM, RI, DI)
 CALL REPRD ('ICRS -> CIRS (JPL, IERS):', RI, DI)

* The same but with Saturn then Jupiter then Sun light deflection.

B(1,1) = 0.00028574D0
B(2,1) = 3D-10
B(3,1) = -7.81014426580818964D0
B(4,1) = -5.6096668114887358D0
B(5,1) = -1.9807981923749924D0
B(6,1) = 0.0030723248971152D0
B(7,1) = -0.0040699547707598D0
B(8,1) = -0.0018133584165345D0

B(1,2) = 0.00095435D0
B(2,2) = 3D-9
B(3,2) = 0.7380987962351833D0
B(4,2) = 4.6365869247538951D0
B(5,2) = 1.9693136030111202D0
B(6,2) = -0.0075581692172088D0
B(7,2) = 0.0012691372216750D0
B(8,2) = 0.0007279990012801D0

B(1,3) = 1D0
B(2,3) = 6D-6
B(3,3) = -0.0007121743770509D0
B(4,3) = -0.0023047830339257D0
B(5,3) = -0.0010586596574639D0
B(6,3) = 0.0000062923521264D0
B(7,3) = -0.0000003308883872D0
B(8,3) = -0.0000002964866231D0

CALL iau_ATCIQN (RC, DC, PR, PD, PX, RV, ASTROM, 3, B, RI, DI)
CALL REPRD ('ICRS -> CIRS (+ planets):', RI, DI)

* CIRS to ICRS (astrometric).
 CALL iau_ATICQN (RI, DI, ASTROM, 3, B, RCA, DCA)
 CALL REPRD ('CIRS -> astrometric:', RCA, DCA)

END

SUBROUTINE REPRD (S, RA, DC)
IMPLICIT NONE
CHARACTER *(*) S
 DOUBLE PRECISION RA, DC

CHARACTER PM
INTEGER IHMSF(4), IDMSF(4)

CALL iau_A2TF (7, RA, PM, IHMSF)
CALL iau_A2AF (6, DC, PM, IDMSF)
WRITE (*, '(A25,3I3.2,''.'',I7.7,A,I2.2,2I3.2,''.'',I6.6)') :
 S, IHMSF, PM, IDMSF
END

The program produces the following report:

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Right Ascension</th>
<th>Declination</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICRS, epoch J2000.0</td>
<td>14 34 16.8118300 -12 31 10.396500</td>
<td></td>
</tr>
<tr>
<td>catalog -> CIRS</td>
<td>14 34 20.2370587 -12 34 36.381654</td>
<td></td>
</tr>
<tr>
<td>CIRS -> astrometric</td>
<td>14 34 16.4960283 -12 31 02.523786</td>
<td></td>
</tr>
<tr>
<td>astrometric -> CIRS</td>
<td>14 34 20.2370587 -12 34 36.381654</td>
<td></td>
</tr>
<tr>
<td>geocentric apparent</td>
<td>14 35 01.7725802 -12 34 36.381654</td>
<td></td>
</tr>
<tr>
<td>CIRS -> topocentric</td>
<td>14 34 20.2570288 -12 34 36.141207</td>
<td></td>
</tr>
<tr>
<td>CIRS -> observed</td>
<td>14 34 16.9649101 -12 34 44.643091</td>
<td></td>
</tr>
<tr>
<td>ICRS -> observed</td>
<td>14 34 16.9649106 -12 34 44.643094</td>
<td></td>
</tr>
<tr>
<td>ICRS -> CIRS (JPL, IERS)</td>
<td>14 34 20.2370639 -12 34 36.381756</td>
<td></td>
</tr>
<tr>
<td>ICRS -> CIRS (+ planets)</td>
<td>14 34 20.2370658 -12 34 36.381784</td>
<td></td>
</tr>
<tr>
<td>CIRS -> astrometric</td>
<td>14 34 16.4960283 -12 31 02.523786</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- The pressure value (952 hPa ≡ mB) is the actual pressure at the observer’s location, which aviators call QFE. A common mistake is to use QNH, the current pressure extrapolated down to sea level and consequently close to 1013 hPa irrespective of site altitude.

- The wavelength is in the yellow-green. To select the radio case, any number larger than 100 can be used.

- When starting from UTC, it is important to use the SOFA routine iau_DT2D even though the result resembles an ordinary SOFA two-part JD: this is because of leap-second handling.

- The polar motion x and y can be set to zero in many low-accuracy applications. However, UT1—UTC is vital whenever topocentric or observed $[h, \delta]$ or $[az, alt]$ is being calculated.

- The example proper motion specifies both μ_α and μ_δ in milliarcseconds (per year), as in the Hipparcos catalog for example. The milliarcsecond unit identifies the α proper motion component as being “distance on the sky” rather than “change in the right ascension coordinate”. The SOFA routines all use the latter, in common with the FK5 catalog for example, and so in the test case a $\cos \delta$ scaling is required.
The first result:

\[14^h\,34^m\,16^s\,811\,830\,0\,\text{S} - \text{C}12^\circ\,31'\,10.396\,500.\]

...is simply the supplied catalog \([\alpha, \delta]\).

Next, the ICRS to (geocentric) CIRS transformation using the “single call” approach is demonstrated, in this case \texttt{iau_ATCI13}. The result is:

\[14^h\,34^m\,20^s\,237\,058\,7 - 12\,\text{C}^\circ\,34'\,36'\,381\,654\]

If multiple stars were involved, and computational efficiency important, it would be better to call \texttt{iau_APCI13} once followed by multiple calls to \texttt{iau_ATCIQ}.

Next, the reverse transformation uses \texttt{iau_ATIC13} to give the “astrometric” place:

\[14^h\,34^m\,16^s\,496\,028\,3 - 12\,\text{C}^\circ\,31'\,02'\,523\,786\]

This differs from the catalog \([\alpha, \delta]\) in the first line of the report because the astrometric place includes the effects of the star’s proper motion from J2000.0 to date.

The astrometric place is itself then transformed into CIRS by calling \texttt{iau_ATCI13} again, but this time with zero proper motion, parallax and radial velocity. The result...

\[14^h\,34^m\,20^s\,237\,058\,7 - 12\,\text{C}^\circ\,34'\,36'\,381\,654\]

...is as before.

Next, the classical (equinox based) apparent place is obtained, simply by taking the equation of the origins returned by the \texttt{iau_ATCI13} routine and subtracting it from the (CIO based) CIRS \(\alpha\), leaving \(\delta\) unchanged:

\[14^h\,35^m\,01^s\,772\,580\,2 - 12\,\text{C}^\circ\,34'\,36'\,381\,654\]

The CIRS position is transformed into topocentric \([\alpha, \delta]\) by calling the CIRS \(\rightarrow\) observed \texttt{iau_ATIO13} routine with zero air pressure:

\[14^h\,34^m\,20^s\,257\,028\,8 - 12\,\text{C}^\circ\,36'\,141\,207\]

Calling \texttt{iau_ATIO13} routine again but this time with the ambient conditions specified gives the observed \([\alpha, \delta]\):

\[14^h\,34^m\,16^s\,964\,910\,1 - 12\,\text{C}^\circ\,44^\prime\,643\,091\]

The two-stage transformation ICRS \(\rightarrow\) CIRS \(\rightarrow\) observed, although convenient in many applications, involves diurnal corrections that are non-rigorous. The \texttt{iau_ATC013} routine performs the direct ICRS \(\rightarrow\) observed transformation to reach this slightly different result:

\[14^h\,34^m\,16^s\,964\,910\,6 - 12\,\text{C}^\circ\,44^\prime\,643\,094\]

Next, the ICRS to CIRS transformation that we started with is repeated, but this time using the JPL DE405 solar-system ephemeris to obtain the Earth position and velocity, instead of the SOFA routine \texttt{iau_EPV00}, and using the CIP published in IERS bulletins. This is accomplished by performing the transformation in two steps, first by populating the astrometry context and then using it on the test target. This involves the routines
iau_APCI followed by iau_ATCIQ. iau_APCI will require not just the barycentric vectors but also the heliocentric position, so the first step is to compute the Earth ephemeris using SOFA routines and then substitute the DE405 barycentric vector components: see the code for the numerical values. We obtain the best possible CIP by adding corrections \(dx, dy\) published by the IERS to their reference bias-precession-nutation model, namely IAU 2000A, and finally use SOFA to obtain the CIO locator \(s\). We can then call iau_APCI specifying the mixture of SOFA/JPL/IERS data, followed by iau_ATciq to perform the transformation. The result is:

\[
14^h 34^m 20^s 23.70639 - 12^\circ 34' 36.381756
\]

Almost all of the difference between this and the previous CIRS results is because of the IERS CIP corrections, which for the most part are to provide the (unmodeled) free core nutation. A very small contribution comes from the improved Earth velocity and its effect on the aberration, but this is never more than about 5 \(\mu\)as.

- All the transformations up to now have taken into account the light deflection by the Sun, a refinement that on its own exceeds the accuracy demands of most applications. However, applications requiring the utmost accuracy should in addition take account of the planets, and to this end the example includes Jupiter and Saturn. For each of these bodies, plus the Sun, the code specifies the mass and the barycentric position and velocity at the epoch of observation; as before, values from DE405 are used. Also needed is a cutoff parameter, chosen to be within the disk of the body as seen by the observer, within which the calculation is suppressed to avoid numerical difficulties.

The transformation from catalog coordinates to CIRS is performed by an extended form of the iau_ATCIQ routine, namely iau_ATCIQN call. This requires two additional arguments, namely the number of solar-system bodies to be taken into account and an array of that many per-body parameter sets. In this example the order is Saturn then Jupiter then Sun. The result of the transformation is:

\[
14^h 34^m 20^s 23.70658 - 12^\circ 34' 36.381784
\]

The small differences with respect to the Sun-only calculation are, in this case, due to Saturn, which is about 0\(^{\circ}\)38 from the star, compared with 148\(^{\circ}\) and 153\(^{\circ}\) for Jupiter and the Sun respectively.

- Finally, that result is transformed back into astrometric place. The result agrees with that obtained earlier:

\[
14^h 34^m 16^s 49.60283 - 12^\circ 31' 02'' 52.3786
\]
7 Gnomonic projection

In order to publish pictures of the sky it is necessary to choose a map projection. Projections used for maps of the Earth’s surface have particular advantages and disadvantages such as whether areas or shapes are distorted, and which is best for a particular application often depends on how large an area is to be presented; for example different choices might be made for maps of a city, a continent and the whole globe. Exactly the same considerations apply for maps of the sky, when the projections chosen for a tiny starfield, an individual constellation or for the whole celestial sphere might be very different (see Calabretta & Greisen 2002). In both terrestrial and astronomical work, an extremely common case is where only a small area is to be mapped, and here the choice of projection tends to be less critical. One choice for such applications is the gnomonic, or tangent-plane, projection. This has a special advantage for astrometric work in that it is the projection geometry that is produced by a pinhole camera, which in turn is close to that produced by classical long-focus astrographs. Indeed, for most astronomical cameras it is convenient to use the tangent-plane projection as the basis, adding small distortion corrections as required.

Each star on an astrographic exposure has celestial spherical coordinates and its image has Cartesian coordinates. The third element in the projection is the celestial position of the plate center or “tangent-point”. The spherical coordinate system is always assumed to be generic \([\alpha, \delta]\) (with no stipulation about whether mean, apparent, ICRS etc.), though it would be equally valid to use galactic, ecliptic or any other spherical coordinate system. The Cartesian system has the tangent-point as the origin, an \(\eta\)-axis pointing north and a \(\xi\)-axis pointing east; the units amount to radians near the tangent-point. These are called “standard coordinates”.

There are standard formulas that predict \([\xi, \eta]\) given \([\alpha, \delta]\) for the star and tangent-point respectively, and others that predict the star’s \([\alpha, \delta]\) given the \([\xi, \eta]\) of the image and the \([\alpha, \delta]\) of the tangent-point. Both of these transformations are supported by SOFA routines, which also provide a means to solve for the tangent point given a star’s \([\alpha, \delta]\) and the \([\xi, \eta]\) of its image.

For practical astrometry the geometrical relationship between \([\alpha, \delta]\) and \([\xi, \eta]\) is merely the starting point, and it is traditional to add a “plate model” that incorporates not only instrumental effects such as focal plane tilt and radial distortion but also astronomical ones such as precessional rotation, differential aberration and differential refraction. However, in the modern era it is arguably better to keep these details separate from the idealized sky projection, and treating them with more rigor.

In practice, the relationship between \([\xi, \eta]\) and plate \([x, y]\), or equivalently camera pixel coordinates, is often expressed as an affine transformation:

\[
\begin{align*}
x &= a + b \xi + c \eta \\
y &= d + e \xi + f \eta
\end{align*}
\]

Given matching \([x, y]\) and \([\xi, \eta]\) coordinates for a set of reference stars, the six coefficients \(a, b, c, d, e, f\) are found by least-squares fitting, whereupon the model can be applied to “unknown” stars. It is not uncommon for mean \([\alpha, \delta]\)s to be plugged into the formulas, relying on the affine fit to deal with differential aberration and refraction etc., as already described.
Figure 2: Relationship between celestial and focal-plane coordinates
The diagram shows how a star’s catalog \([\alpha, \delta]\) is linked to the \([x, y]\) coordinates of its image on the detector.

Better results can be obtained by using observed \([\alpha, \delta]\), so that all the affine transformation has to deal with are offsets and plate scales. Indeed, it may be possible to reduce the number of fitted coefficients to four, with \(b\) and \(f\) numerically the same and likewise \(c\) and \(e\).

A further layer in the sequence of transformations is allowing for optical distortions, as already mentioned. A common form for such corrections is \(\Delta r = kr^3\), where \(r\) is the radial distance from the center of the projection measured in units of one focal length and \(k\) is a constant that best matches the particular optical behavior. For example, an excellent approximation to Schmidt camera geometry is \(k = -1/3\), with typically much larger numbers needed for the pincushion/barrel distortion introduced by more complex optics.

The end-to-end plate reduction sequence is shown in Figure 2. The required fundamental-astronomy transformations are provided by the SOFA astrometric routines described in earlier chapters, while the gnomonic transformation is supported by the following six SOFA tangent-plane routines:

<table>
<thead>
<tr>
<th>routines</th>
<th>transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>iau_TPXES</td>
<td>iau_TPXEV</td>
</tr>
<tr>
<td>iau_TPSTS</td>
<td>iau_TPSTV</td>
</tr>
<tr>
<td>iau_TPORS</td>
<td>iau_TPORV</td>
</tr>
</tbody>
</table>

In the above table, “star” and “TP” mean the celestial positions of the star and tangent-point respectively, while \([\xi, \eta]\) are the “standard coordinates”. The celestial positions can either be spherical coordinates (routines called iau_TP...S) or direction cosines (routines called iau_TP...V).

As a demonstration, consider the case of an equatorially mounted astrograph of focal length 3430 mm which delivers pinhole-camera geometry across a photographic plate 120 mm square.
The focal-plane \([x, y]\) coordinate system has its origin at the plate center, and at ordinary declinations the projection on the sky of the \(y\)-axis runs north, while the \(x\)-axis runs towards the east; the units are millimeters. To test the rigor of the algorithms, we will point the astrograph close to the north celestial pole, at observed \([\alpha, \delta]\) 9\(^h\) 00\(^m\) 00\(^s\) 00 +89\(^\circ\) 30\(^\prime\) 00\(^\prime\prime\).

IMPLICIT NONE

* Degrees to radians

  ```fortran
  DOUBLE PRECISION DD2R
  PARAMETER ( DD2R = 1.745329251994329576923691D-2 )
  ```

* Focal length (mm).

  ```fortran
  DOUBLE PRECISION FL
  PARAMETER ( FL = 3430D0 )
  ```

* Observed \([RA,Dec]\) of tangent point (radians).

  ```fortran
  RAZ = 9D0 * 15D0 * DD2R
  DECZ = 89.5D0 * DD2R
  ```

* Observed \([RA,Dec]\) of a star (radians).

  ```fortran
  RA = 5D0 * 15D0 * DD2R
  DEC = 89.75D0 * DD2R
  ```

* Plate coordinates of star image.

  ```fortran
  CALL iau_TPXES ( RA, DEC, RAZ, DECZ, XI, ETA, J )
  IF ( J .NE. 0 ) STOP
  WRITE ( *, '(''image [x,y]/mm ='',SP,F8.3,'','',F8.3)' ) :
      XI*FL, ETA*FL
  ```

What would be the plate coordinates of a star at 5\(^h\) 00\(^m\) 00\(^s\) 00 +89\(^\circ\) 45\(^\prime\) 00\(^\prime\prime\)?

* Observed \([RA,Dec]\) of a star (radians).

  ```fortran
  RA = 5D0 * 15D0 * DD2R
  DEC = 89.75D0 * DD2R
  ```

* Plate coordinates of star image.

  ```fortran
  CALL iau_TPXES ( RA, DEC, RAZ, DECZ, XI, ETA, J )
  IF ( J .NE. 0 ) STOP
  WRITE ( *, '(''image [x,y]/mm =''',SP,F8.3,'','',F8.3)' )
      XI*FL, ETA*FL
  ```

The output is “image \([x,y]\)/mm = -12.961, +22.450”. What would be the observed \([\alpha, \delta]\) at plate coordinates \([-20.000, +60.000]\)?
* Plate coordinates of a different star image.
 \[X = -20D0 \]
 \[Y = 60D0 \]

* Celestial coordinates of that star.
 \[XI = X/FL \]
 \[ETA = Y/FL \]
 CALL iau_TPSTS (XI, ETA, RAZ, DECZ, RA, DEC)
 CALL iau_A2TF (2, RA, SIGN, IHMSF)
 CALL iau_A2AF (1, DEC, SIGN, IDMSF)
 WRITE (*, '(''star [RA,Dec] ='',3I3.2,''.'',I2.2,' //
 : ''1X,A,I2.2,2I3.2,''.'',I1)') IHMSF, SIGN, IDMSF

The output is "star [RA,Dec] = 23 14 31.74 +89 23 48.8". Using this result and the corresponding [x,y] coordinates, we can solve for the [\(\alpha \), \(\delta \)] of the plate center:

* Given that star's [RA,Dec] and [x,y], solve for tangent point.
 CALL iau_TPORS (XI, ETA, RA, DEC, AZ1, BZ1, AZ2, BZ2, N)
 IF (N .NE. 0) THEN
 CALL iau_A2TF (2, AZ1, SIGN, IHMSF)
 CALL iau_A2AF (1, BZ1, SIGN, IDMSF)
 WRITE (*, '(''TP1 ='',3I3.2,''.'',I2.2,' //
 : ''1X,A,I2.2,2I3.2,''.'',I1)') IHMSF, SIGN, IDMSF
 IF (N .EQ. 2) THEN
 CALL iau_A2TF (2, AZ2, SIGN, IHMSF)
 CALL iau_A2AF (1, BZ2, SIGN, IDMSF)
 WRITE (*, '(''TP2 ='',3I3.2,''.'',I2.2,' //
 : ''1X,A,I2.2,2I3.2,''.'',I1)') IHMSF, SIGN, IDMSF
 END IF
 END IF

Two lines of output are produced: "TP1 = 01 29 03.48 +88 29 44.5" and "TP2 = 09 00 00.00 +89 30 00.0", showing that for this polar field there are two astrograph pointings that would have placed the star’s image at the given [x,y]. This ambiguity can happen only close to a pole, where there may also be no possible solutions. For typical small fields, and over most of the sky, there will be exactly one solution.
8 Alphabetical list of routines

A complete list of the SOFA astrometry routines\(^6\) follows, arranged alphabetically. There are three main categories:

1. Those with names beginning `iau_AP` populate a context array with star-independent parameters that prepare the way for transformations on one or more targets. Various combinations of observer location and transformation type are provided for: it is vital to choose the right one for the job in hand: otherwise the results are undefined. The “populate” routines come in two sorts:

 (a) Those with names ending in `13` are the most commonly used. The caller specifies data such as site coordinates, and other SOFA routines are then used internally to compute Earth ephemerides, precession-nutation, refraction constants and so on.

 (b) The rest are “special”, in that they allow the caller to supply his own parameters, for instance looked up in a numerical ephemeris or calculated using a favorite refraction model.

2. Those routines with names beginning `iau_AT` perform a particular transformation. There are two sorts of “transform” routines:

 (a) Those names ending in `Q` or `QZ` are the “quick” routines that perform transformations using a pre-computed star-independent context. These are most useful when performing the same transformation on multiple targets.

 (b) The others are single calls that perform the specified transformation on a single target.

3. The remaining routines support particular transformation steps.

To avoid unnecessary proliferation, not all combinations are supported. For example there are no “special” versions of the convenient one-call transformation routines: if the user wishes to use his own ephemeris, refraction, etc., it will be necessary to use the two-call approach.

Most applications will need only the handful of easy-to-use Type 2b routines.

\(^6\) All are classed as “support routines”: although they are meant to represent good practice, they do not claim to implement IAU standards or resolutions.
CALL :
CALL iau_AB (PNAT, V, S, BM1, PPR)

ACTION :
Apply aberration to transform natural direction into proper direction.

GIVEN :

- **PNAT** d(3) natural direction to the source (unit vector)
- **V** d(3) \(\mathbf{v} \): observer barycentric velocity in units of c
- **S** d distance between the Sun and the observer (au)
- **BM1** d \((1 − |\mathbf{v}|^2)^{1/2}\): reciprocal of Lorenz factor

RETURNED :

- **PPR** d(3) proper direction to source (unit vector)

NOTES :

1. The algorithm is based on Eq. (7.40) in the *Explanatory Supplement* (Urban & Seidelmann 2013), but with the following changes:
 - Rigorous rather than approximate normalization is applied.
 - The gravitational potential term from Eq. (7) in Klioner (2003) is added, taking into account only the Sun’s contribution. This has a maximum effect of about 0.4 \(\mu \)as.

2. In almost all cases, the maximum accuracy will be limited by the supplied velocity. For example, if the SOFA routine iau_EPV00 is used, errors of up to 5 \(\mu \)as could occur.
CALL :
CALL iau_AE2HD (AZ, EL, PHI, HA, DEC)

ACTION :
Horizon to equatorial coordinates: transform azimuth and altitude to hour angle and declination.

GIVEN :
AZ	d	azimuth
EL	d	elevation (≡ altitude)
PHI	d	site latitude (Note 4)

RETURNED :
| HA | d | hour angle |
| DEC | d | declination |

NOTES :
1. All the arguments are angles in radians.
2. The sign convention for azimuth is north zero, east + π/2.
3. HA is returned in the range ± π. Declination is returned in the range ± π/2.
4. The latitude PHI is π/2 minus the angle between the Earth’s rotation axis and the adopted zenith (Note 6). In many applications it will be sufficient to use the published geodetic latitude of the site. In very precise (sub-arcsecond) applications, PHI can be corrected for polar motion.
5. The azimuth AZ must be with respect to the rotational north pole, as opposed to the ITRS pole, and an azimuth with respect to north on a map of the Earth’s surface will need to be adjusted for polar motion if sub-arcsecond accuracy is required.
6. Should the user wish to work with respect to the astronomical horizon rather than the geodetic horizon, PHI will need to be adjusted for deflection of the vertical (often tens of arcseconds), and the zero point of HA will also be affected.
7. The transformation is the same as $V_e = R_y(\phi - \pi/2)R_z(\pi)V_h$, where V_e and V_h are lefthanded unit vectors in the $[\text{ } h, \delta \text{ }]$ and $[\text{ } Az, El \text{ }]$ systems respectively and R_z and R_y are rotations about first the z-axis and then the y-axis. (n.b. $R_z(\pi)$ simply reverses the signs of the x and y components.) For efficiency, the algorithm is written out rather than calling other utility functions. For applications that require even greater efficiency, additional savings are possible if constant terms such as functions of latitude are computed once and for all.
8. Again for efficiency, no range checking of arguments is carried out.
iau_APCG

prepare for ICRS ↔ GCRS, geocentric, special

CALL:

CALL iau_APCG (DATE1, DATE2, EB, EH, ASTROM)

ACTION:

For a geocentric observer, prepare star-independent astrometry parameters for transformations between ICRS and GCRS coordinates. The Earth ephemeris is supplied by the caller.

GIVEN:

- $DATE1$ d TDB as a 2-part...
- $DATE2$ d …Julian Date (Note 1)
- EB d(3,2) Earth barycentric position/velocity (au, au/day)
- EH d(3,2) Earth heliocentric position/velocity (au, au/day)

RETURNED:

- $ASTROM$ d(30) star-independent astrometry parameters

NOTES:

1. The TDB date $DATE1+DATE2$ is a Julian Date, apportioned in any convenient way between the arguments $DATE1$ and $DATE2$. For example, JD(TDB) = 2450123.7 could be expressed in any of these ways, among others:

<table>
<thead>
<tr>
<th>DATE1</th>
<th>DATE2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2450123.7</td>
<td>0.0</td>
<td>(JD method)</td>
</tr>
<tr>
<td>2451545.0</td>
<td>−1421.3</td>
<td>(J2000 method)</td>
</tr>
<tr>
<td>2400000.5</td>
<td>50123.2</td>
<td>(MJD method)</td>
</tr>
<tr>
<td>2450123.5</td>
<td>0.2</td>
<td>(date & time method)</td>
</tr>
</tbody>
</table>

 The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. For most applications of this routine the choice will not be at all critical.

 TT can be used instead of TDB without any significant impact on accuracy.

2. All the vectors are with respect to BCRS axes.

3. The context array $ASTROM$ produced by this routine is used by iau_ATCIQ* and iau_ATICQ*.

CALL:

CALL iau_APCG13 (DATE1, DATE2, ASTROM)

ACTION:

For a geocentric observer, prepare star-independent astrometry parameters for transformations between ICRS and GCRS coordinates. The caller supplies the date, and SOFA models are used to predict the Earth ephemeris.

GIVEN:

\[
\begin{align*}
\text{DATE1} & \quad \text{d} \\
\text{DATE2} & \quad \text{d}
\end{align*}
\]

TDB as a 2-part...

\[
\begin{align*}
\text{DATE2} & \quad \text{d} \\
\text{DATE1} & \quad \text{d}
\end{align*}
\]

...Julian Date (Note 1)

RETURNED:

\[
\begin{align*}
\text{ASTROM} & \quad \text{d(30)}
\end{align*}
\]

star-independent astrometry parameters

NOTES:

1. The TDB date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the arguments DATE1 and DATE2. For example, JD(TDB) = 2450123.7 could be expressed in any of these ways, among others:

\[
\begin{array}{ll}
\text{DATE1} & \text{DATE2} \\
2450123.7 & 0.0 \quad \text{(JD method)} \\
2451545.0 & -1421.3 \quad \text{(J2000 method)} \\
2400000.5 & 50123.2 \quad \text{(MJD method)} \\
2450123.5 & 0.2 \quad \text{(date & time method)}
\end{array}
\]

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. For most applications of this routine the choice will not be at all critical.

TT can be used instead of TDB without any significant impact on accuracy.

2. All the vectors are with respect to BCRS axes.

3. In cases where the caller wishes to supply his own Earth ephemeris, the routine iau_APCG can be used instead of the present routine.

4. The context array ASTROM produced by this routine is used by iau_ATCIQ* and iau_ATICQ*.
CALL:

CALL iau_APCI (DATE1, DATE2, EB, EH, X, Y, S, ASTROM)

ACTION:

For a terrestrial observer, prepare star-independent astrometry parameters for transformations between ICRS and geocentric CIRS coordinates. The Earth ephemeris and CIP/CIO are supplied by the caller.

GIVEN:

- **DATE1** d TDB as a 2-part...
- **DATE2** d …Julian Date (Note 1)
- **EB** d(3,2) Earth barycentric position/velocity (au, au/day)
- **EH** d(3,2) Earth heliocentric position/velocity (au, au/day)
- **X, Y** d CIP X, Y (components of unit vector)
- **S** d the CIO locator s (radians)

RETURNED:

- **ASTROM** d(30) star-independent astrometry parameters

NOTES:

1. The TDB date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the arguments DATE1 and DATE2. For example, JD(TDB) = 2450123.7 could be expressed in any of these ways, among others:

 - DATE1 DATE2
 - 2450123.7 0.0 (JD method)
 - 2451545.0 −1421.3 (J2000 method)
 - 2400000.5 50123.2 (MJD method)
 - 2450123.5 0.2 (date & time method)

 The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The MJD method and the date & time methods are both good compromises between resolution and convenience. For most applications of this routine the choice will not be at all critical.

 TT can be used instead of TDB without any significant impact on accuracy.

2. All the vectors are with respect to BCRS axes.

3. In cases where the caller does not wish to provide the Earth ephemeris and CIP/CIO, the routine iau_APCI13 can be used instead of the present routine. This computes the required quantities using other SOFA routines.

4. The context array ASTROM produced by this routine is used by iau_ATCIQ* and iau_ATICQ*.
CALL :
CALL iau_APCI13 (DATE1, DATE2, ASTROM, EO)

ACTION :
For a terrestrial observer, prepare star-independent astrometry parameters for transformations between ICRS and geocentric CIIRS coordinates. The caller supplies the date, and SOFA models are used to predict the Earth ephemeris and CIP/CIO.

GIVEN :
\begin{align*}
\text{DATE1} & \quad \text{d} \quad \text{TDB as a 2-part...} \\
\text{DATE2} & \quad \text{d} \quad \text{...Julian Date (Note 1)}
\end{align*}

RETURNED :
\begin{align*}
\text{ASTROM} & \quad \text{d}(30) \quad \text{star-independent astrometry parameters} \\
\text{EO} & \quad \text{d} \quad \text{equation of the origins (ERA–GST)}
\end{align*}

NOTES :
1. The TDB date \(\text{DATE1+DATE2} \) is a Julian Date, apportioned in any convenient way between the arguments \(\text{DATE1} \) and \(\text{DATE2} \). For example, \(\text{JD(TDB)} = 2450123.7 \) could be expressed in any of these ways, among others:

\begin{align*}
\text{DATE1} & \quad \text{DATE2} \\
2450123.7 & \quad 0.0 \quad \text{(JD method)} \\
2451545.0 & \quad −1421.3 \quad \text{(J2000 method)} \\
2400000.5 & \quad 50123.2 \quad \text{(MJD method)} \\
2450123.5 & \quad 0.2 \quad \text{(date & time method)}
\end{align*}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. For most applications of this routine the choice will not be at all critical.

\text{TT can be used instead of TDB without any significant impact on accuracy.}

2. All the vectors are with respect to BCRS axes.

3. In cases where the caller wishes to supply his own Earth ephemeris and CIP/CIO, the routine \text{iau_APCI} can be used instead of the present routine.

4. The context array \text{ASTROM} produced by this routine is used by \text{iau_ATCIQ*} and \text{iau_ATICQ*}.
CALL: CALL iau_APCO (DATE1, DATE2, EB, EH, X, Y, S,
 THETA, ELONG, PHI, HM, XP, YP, SP, REFA, REFB, ASTROM)

ACTION: For a terrestrial observer, prepare star-independent astrometry parameters for transforma-
tions between ICRS and observed coordinates. The caller supplies the Earth ephemeris,
the Earth rotation information and the refraction constants as well as the site coordinates.

GIVEN:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE1</td>
<td>d</td>
<td>TDB as a 2-part...</td>
</tr>
<tr>
<td>DATE2</td>
<td>d</td>
<td>...Julian Date (Note 1)</td>
</tr>
<tr>
<td>EB</td>
<td>d(3,2)</td>
<td>Earth barycentric pos/vel (au, au/day, Note 2)</td>
</tr>
<tr>
<td>EH</td>
<td>d(3,2)</td>
<td>Earth heliocentric pos/vel (au, au/day, Note 2)</td>
</tr>
<tr>
<td>X,Y</td>
<td>d</td>
<td>CIP X, Y (components of unit vector)</td>
</tr>
<tr>
<td>S</td>
<td>d</td>
<td>the CIO locator s (radians)</td>
</tr>
<tr>
<td>THETA</td>
<td>d</td>
<td>Earth rotation angle (radians)</td>
</tr>
<tr>
<td>ELONG</td>
<td>d</td>
<td>longitude (radians, east-positive, Note 3)</td>
</tr>
<tr>
<td>PHI</td>
<td>d</td>
<td>latitude (geodetic, radians, Note 3)</td>
</tr>
<tr>
<td>HM</td>
<td>d</td>
<td>height above ellipsoid (m, geodetic, Note 3)</td>
</tr>
<tr>
<td>XP,YP</td>
<td>d</td>
<td>polar motion coordinates (radians, Note 4)</td>
</tr>
<tr>
<td>REFA</td>
<td>d</td>
<td>the TIO locator s’ (radians, Note 4)</td>
</tr>
<tr>
<td>REFB</td>
<td>d</td>
<td>refraction constant A (radians, Note 5)</td>
</tr>
</tbody>
</table>

RETURNED:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTROM</td>
<td>d(30)</td>
<td>star-independent astrometry parameters</td>
</tr>
</tbody>
</table>

NOTES:

1. The TDB date DATE1+DATE2 is a Julian Date, apportioned in any convenient way
 between the arguments DATE1 and DATE2. For example, JD(TDB) = 2450123.7 could
 be expressed in any of these ways, among others:

<table>
<thead>
<tr>
<th>DATE1</th>
<th>DATE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2450123.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2451545.0</td>
<td>−1421.3</td>
</tr>
<tr>
<td>2400000.5</td>
<td>50123.2</td>
</tr>
<tr>
<td>2450123.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

 The JD method is the most natural and convenient to use in cases where the loss of
 several decimal digits of resolution is acceptable. The MJD method and the date &
time methods are both good compromises between resolution and convenience. For
most applications of this routine the choice will not be at all critical.

 TT can be used instead of TDB without any significant impact on accuracy.
2. The vectors \mathbf{EB}, \mathbf{EH}, and all the ASTROM vectors, are with respect to BCRS axes.

3. The geographical coordinates are with respect to the WGS84 reference ellipsoid. **Take care with the longitude sign:** the longitude required by the present routine is east-positive (i.e. right-handed), in accordance with geographical convention.

4. The polar motion X_P, Y_P can be obtained from IERS bulletins. The values are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians 0° and 90° west respectively. For many applications, X_P and Y_P can be set to zero.

5. The refraction constants REFA and REFB are for use in a $\Delta \zeta = A \tan \zeta + B \tan^3 \zeta$ model, where ζ is the observed (i.e. refracted) zenith distance and $\Delta \zeta$ is the amount of refraction.

6. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.

7. In cases where the caller does not wish to provide the Earth Ephemeris, the Earth rotation information and refraction constants, the routine iau_APC013 can be used instead of the present routine. This starts from UTC and weather readings *etc.* and computes suitable values using other SOFA routines.

8. The context array ASTROM produced by this routine is used by iau_ATIOQ, iau_ATIQ, iau_ATCIQ^* and iau_ATICQ^*.
CALL:

CALL iau_APCO13 (UTC1, UTC2, DUT1, ELONG, PHI, HM, XP, YP,
 PHPA, TC, RH, WL, ASTROM, EO, J)

ACTION:

For a terrestrial observer, prepare star-independent astrometry parameters for transformations between ICRS and observed coordinates. The caller supplies UTC, site coordinates, ambient air conditions and observing wavelength, and SOFA models are used to obtain the Earth ephemeris, CIP/CIO and refraction constants.

GIVEN:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTC1</td>
<td>d</td>
<td>UTC as a 2-part…</td>
</tr>
<tr>
<td>UTC2</td>
<td>d</td>
<td>…quasi Julian Date (Notes 1,2)</td>
</tr>
<tr>
<td>DUT1</td>
<td>d</td>
<td>UT1–UTC (seconds)</td>
</tr>
<tr>
<td>ELONG</td>
<td>d</td>
<td>longitude (radians, east-positive, Note 3)</td>
</tr>
<tr>
<td>PHI</td>
<td>d</td>
<td>geodetic latitude (radians, Note 3)</td>
</tr>
<tr>
<td>HM</td>
<td>d</td>
<td>height above ellipsoid (m, geodetic Notes 4,6)</td>
</tr>
<tr>
<td>XP,YP</td>
<td>d</td>
<td>polar motion coordinates (radians, Note 5)</td>
</tr>
<tr>
<td>PHPA</td>
<td>d</td>
<td>pressure at the observer (hPa ≡ mB, Note 6)</td>
</tr>
<tr>
<td>TC</td>
<td>d</td>
<td>ambient temperature at the observer (deg C)</td>
</tr>
<tr>
<td>RH</td>
<td>d</td>
<td>relative humidity at the observer (range 0-1)</td>
</tr>
<tr>
<td>WL</td>
<td>d</td>
<td>wavelength (micrometers, Note 7)</td>
</tr>
</tbody>
</table>

RETURNED:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTROM</td>
<td>d(30)</td>
<td>star-independent astrometry parameters</td>
</tr>
<tr>
<td>EO</td>
<td>d</td>
<td>equation of the origins (ERA–GST)</td>
</tr>
<tr>
<td>J</td>
<td>i</td>
<td>status: +1 = dubious year (Note 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1 = unacceptable date</td>
</tr>
</tbody>
</table>

NOTES:

1. UTC1+UTC2 is quasi Julian Date (see Note 2), apportioned in any convenient way between the two arguments, for example where UTC1 is the Julian Day Number and UTC2 is the fraction of a day. However, JD cannot unambiguously represent UTC during a leap second unless special measures are taken. The convention in the present routine is that the JD day represents UTC days whether the length is 86399, 86400 or 86401 SI seconds.

Applications should use the routine iau_DTF2D to convert from calendar date and time of day into two-part quasi Julian Date, as it implements the leap-second-ambiguity convention just described.
2. The warning status “dubious year” flags UTCs that predate the introduction of the time scale or that are too far in the future to be trusted. See iau_DAT for further details.

3. UT1–UTC is tabulated in IERS bulletins. It increases by exactly one second at the end of each positive UTC leap second, introduced in order to keep UT1–UTC within \(\pm 0.9 \) s. *n.b.* This practice is under review, and in the future UT1–UTC may grow essentially without limit.

4. The geographical coordinates are with respect to the WGS84 reference ellipsoid. **Take care with the longitude sign:** the longitude required by the present routine is east-positive (*i.e.* right-handed), in accordance with geographical convention.

5. The polar motion \(\text{XP}, \text{YP} \) can be obtained from IERS bulletins. The values are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians 0° and 90° west respectively. For many applications, \(\text{XP} \) and \(\text{YP} \) can be set to zero.

6. If \(h \), the height above the ellipsoid of the observing station in meters, is not known but \(p \), the pressure in hPa (\(\equiv \text{mB} \)), is available, an adequate estimate of \(h \) can be obtained from the expression

\[
h = -29.3 \, t_0 \log(p/1013.25)
\]

where \(t_0 \) is the approximate sea-level air temperature in K (*See Astrophysical Quantities, C.W. Allen, 3rd edition, Section 52*). Similarly, if the pressure \(p \) is not known, it can be estimated from the height of the observing station, \(h \), as follows:

\[
p = 1013.25 \, e^{-h/(29.3t_0)}
\]

Note, however, that the refraction is nearly proportional to the pressure and that an accurate \(p \) value is important for precise work.

7. The argument \(\text{WL} \) specifies the observing wavelength in micrometers. The transition from optical to radio is assumed to occur at 100 \(\mu \)m (about 3000 GHz).

8. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.

9. In cases where the caller wishes to supply his own Earth ephemeris, Earth rotation information and refraction constants, the routine iau_APCO can be used instead of the present routine.

10. The context array \text{ASTROM} produced by this routine is used by iau_ATIOQ, iau_ATUOQ, iau_ATCIQ* and iau_ATICQ*.
CALL:
CALL iau_APCS (DATE1, DATE2, PV, EB, EH, ASTROM)

ACTION:
For an observer whose geocentric position and velocity are known, prepare star-independent
astrometry parameters for transformations between ICRS and GCRS. The Earth ephemeris
is supplied by the caller.

GIVEN:
 DATE1 d TDB as a 2-part...
 DATE2 d ...Julian Date (Note 1)
 PV d(3,2) observer’s geocentric pos/vel (m, m/s)
 EB d(3,2) Earth barycentric pos/vel (au, au/day)
 EH d(3,2) Earth heliocentric pos/vel (au, au/day)

RETURNED:
 ASTROM d(30) star-independent astrometry parameters

NOTES:
1. The TDB date DATE1+DATE2 is a Julian Date, apportioned in any convenient way
 between the arguments DATE1 and DATE2. For example, JD(TDB) = 2450123.7 could
 be expressed in any of these ways, among others:
 DATE1 DATE2
 2450123.7 0.0 (JD method)
 2451545.0 −1421.3 (J2000 method)
 2400000.5 50123.2 (MJD method)
 2450123.5 0.2 (date & time method)

 The JD method is the most natural and convenient to use in cases where the loss of
 several decimal digits of resolution is acceptable. The J2000 method is best matched
 to the way the argument is handled internally and will deliver the optimum resolution.
 The MJD method and the date & time methods are both good compromises between
 resolution and convenience. For most applications of this routine the choice will not
 be at all critical.

 TT can be used instead of TDB without any significant impact on accuracy.

2. All the vectors are with respect to BCRS axes.

3. Providing separate arguments for (i) the observer’s geocentric position and velocity
 and (ii) the Earth ephemeris is done for convenience in the geocentric, terrestrial
 and Earth orbit cases. For deep space applications it maybe more convenient to
 specify zero geocentric position and velocity and to supply the observer’s position
 and velocity information directly instead of with respect to the Earth. However, note
 the different units: m and m/s for the geocentric vectors, au and au/day for the
 heliocentric and barycentric vectors.
4. In cases where the caller does not wish to provide the Earth ephemeris, the routine `iau_APCS13` can be used instead of the present routine. This computes the Earth ephemeris using the SOFA routine `iau_EPV00`.

5. The context array `ASTROM` produced by this routine is used by `iau_ATCIQ*` and `iau_ATICQ*`.
CALL :
CALL iau_APCS13 (DATE1, DATE2, PV, ASTROM)

ACTION :
For an observer whose geocentric position and velocity are known, prepare star-independent
astrometry parameters for transformations between ICRS and GCRS. The Earth ephemeris
is from SOFA models.

GIVEN :
DATE1 d TDB as a 2-part...
DATE2 d ...Julian Date (Note 1)
PV d(3,2) observer’s geocentric position/velocity (Note 3)

RETURNED :
ASTROM d(30) star-independent astrometry parameters

NOTES :
1. The TDB date DATE1+DATE2 is a Julian Date, apportioned in any convenient way
between the arguments DATE1 and DATE2. For example, JD(TDB) = 2450123.7 could
be expressed in any of these ways, among others:

<table>
<thead>
<tr>
<th>DATE1</th>
<th>DATE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2450123.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2451545.0</td>
<td>-1421.3</td>
</tr>
<tr>
<td>2400000.5</td>
<td>50123.2</td>
</tr>
<tr>
<td>2450123.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

The JD method is the most natural and convenient to use in cases where the loss of
several decimal digits of resolution is acceptable. The J2000 method is best matched
to the way the argument is handled internally and will deliver the optimum resolution.
The MJD method and the date & time methods are both good compromises between
resolution and convenience. For most applications of this routine the choice will not
be at all critical.

TT can be used instead of TDB without any significant impact on accuracy.

2. All the vectors are with respect to BCRS axes.

3. The observer’s position and velocity PV are geocentric but with respect to BCRS axes,
and in units of m and m/s. No assumptions are made about proximity to the Earth,
and the routine can be used for deep space applications as well as Earth orbit and
terrestrial.

4. In cases where the caller wishes to supply his own Earth ephemeris, the routine
iau_APCS can be used instead of the present routine.

5. The context array ASTROM produced by this routine is used by iau_ATCIQ* and
iau_ATICQ*.
CALL :
CALL iau_APER (THETA, ASTROM)

ACTION :
In the star-independent astrometry parameters, update only the Earth rotation angle, supplied by the caller explicitly.

GIVEN :

\(\text{THETA} \quad \text{d} \quad \) Earth rotation angle (radians, Note 2)
\(\text{ASTROM} \quad \text{d(30)} \quad \) star-independent astrometry parameters

RETURNED :

\(\text{ASTROM} \quad \text{d(30)} \quad \) star-independent astrometry parameters

NOTES :

1. This routine exists to enable sidereal-tracking applications to avoid wasteful recomputation of the bulk of the astrometry parameters: only the Earth rotation is updated.

2. For targets expressed as equinox based positions, such as classical geocentric apparent \([\alpha, \delta]\), the supplied \(\text{THETA} \) can be Greenwich apparent sidereal time rather than Earth rotation angle.

3. The routine \(\text{iau_APER13} \) can be used instead of the present routine, and starts from UT1 rather than ERA itself.
CALL:
CALL iau_APER13 (UT11, UT12, ASTROM)

ACTION:
In the star-independent astrometry parameters, update only the Earth rotation angle: the caller provides UT1 (n.b. not UTC) and the IAU 2000 ERA formula is used.

GIVEN:
\begin{align*}
UT11 & \quad \text{d} \quad \text{UT1 as a 2-part...} \\
UT12 & \quad \text{d} \quad \ldots \text{Julian Date (Note 1)} \\
ASTROM & \quad \text{d(30)} \quad \text{star-independent astrometry parameters}
\end{align*}

RETURNED:
\begin{align*}
ASTROM & \quad \text{d(30)} \quad \text{star-independent astrometry parameters}
\end{align*}

NOTES:
1. The UT1 date $\text{UT11} + \text{UT12}$ is a Julian Date, apportioned in any convenient way between the arguments UT11 and UT12. For example, JD(UT1) = 2450123.7 could be expressed in any of these ways, among others:
\begin{align*}
\text{UT11} & \quad \text{UT12} \\
2450123.7 & \quad 0.0 \quad \text{(JD method)} \\
2451545.0 & \quad -1421.3 \quad \text{(J2000 method)} \\
2400000.5 & \quad 50123.2 \quad \text{(MJD method)} \\
2450123.5 & \quad 0.2 \quad \text{(date & time method)}
\end{align*}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 and MJD methods are good compromises between resolution and convenience. The date & time method is best matched to the algorithm used: maximum precision is delivered when the UT11 argument is for 0^h UT1 on the day in question and the UT12 argument lies in the range 0 to 1, or vice versa.

2. If the caller wishes to provide the Earth rotation angle itself, the routine iau_APER can be used instead. One use of this technique is to substitute Greenwich apparent sidereal time and thereby to support equinox based transformations directly.
CALL:
CALL iau_APIO (SP, THETA, ELONG, PHI, HM, XP, YP, REFA, REFB, ASTROM)

ACTION:
For a terrestrial observer, prepare star-independent astrometry parameters for transformations between CIRS and observed coordinates. The caller supplies the Earth orientation information and the refraction constants as well as the site coordinates.

GIVEN:

- **SP** d: the TIO locator s' (radians, Note 1)
- **THETA** d: Earth rotation angle (radians)
- **ELONG** d: longitude (radians, east-positive, Note 2)
- **PHI** d: geodetic latitude (radians, Note 2)
- **HM** d: height above ellipsoid (m, geodetic Note 2)
- **XP,YP** d: polar motion coordinates (radians, Note 3)
- **REFA** d: refraction constant A (radians, Note 4)
- **REFB** d: refraction constant B (radians, Note 4)

RETURNED:

- **ASTROM** d(30): star-independent astrometry parameters

NOTES:

1. **SP**, the TIO locator s', is a tiny quantity needed only by the most precise applications. It can either be set to zero or predicted using the SOFA routine iau_SP00.

2. The geographical coordinates are with respect to the WGS84 reference ellipsoid. **Take care with the longitude sign:** the longitude required by the present routine is east-positive (i.e. right-handed), in accordance with geographical convention.

3. The polar motion XP,YP can be obtained from IERS bulletins. The values are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians 0° and 90° west respectively. For many applications, XP and YP can be set to zero.

4. The refraction constants **REFA** and **REFB** are for use in a $\Delta \zeta = A \tan \zeta + B \tan^3 \zeta$ model, where ζ is the observed (i.e. refracted) zenith distance and $\Delta \zeta$ is the amount of refraction.

5. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.

6. In cases where the caller does not wish to provide the Earth rotation information and refraction constants, the routine iau_APIO13 can be used instead of the present routine. This starts from UTC and weather readings etc. and computes suitable values using other SOFA routines.

7. The context array **ASTROM** produced by this routine is used by iau_ATIOQ and iau_ATOIQ.
CALL:

CALL iau_APIO13 (UTC1, UTC2, DUT1, ELONG, PHI, HM, XP, YP,
 PHPA, TC, RH, WL, ASTROM, J)

ACTION:

For a terrestrial observer, prepare star-independent astrometry parameters for transformations between CIRS and observed coordinates. The caller supplies UTC, site coordinates, ambient air conditions and observing wavelength.

GIVEN:

UTC1	d	UTC as a 2-part...
UTC2	d	... quasi Julian Date (Notes 1,2)
DUT1	d	UT1–UTC (seconds)
ELONG	d	longitude (radians, east-positive, Note 3)
PHI	d	geodetic latitude (radians, Note 3)
HM	d	height above ellipsoid (m, geodetic Notes 4,6)
XP,YP	d	polar motion coordinates (radians, Note 5)
PHPA	d	pressure at the observer (hPa \equiv \text{mB}, Note 6)
TC	d	ambient temperature at the observer (deg C)
RH	d	relative humidity at the observer (range 0-1)
WL	d	wavelength (micrometers, Note 7)

RETURNED:

| ASTROM | d(30) | star-independent astrometry parameters |
| J | i | status: +1 = dubious year (Note 2) |
| 0 = OK |
| −1 = unacceptable date |

NOTES:

1. UTC1+UTC2 is quasi Julian Date (see Note 2), apportioned in any convenient way between the two arguments, for example where UTC1 is the Julian Day Number and UTC2 is the fraction of a day. However, JD cannot unambiguously represent UTC during a leap second unless special measures are taken. The convention in the present routine is that the JD day represents UTC days whether the length is 86399, 86400 or 86401 SI seconds.

Applications should use the routine iau_DTF2D to convert from calendar date and time of day into two-part quasi Julian Date, as it implements the leap-second-ambiguity convention just described.

2. The warning status “dubious year” flags UTCs that predate the introduction of the time scale or that are too far in the future to be trusted. See iau_DAT for further details.
3. UT1–UTC is tabulated in IERS bulletins. It increases by exactly one second at the end of each positive UTC leap second, introduced in order to keep UT1–UTC within \(\pm 0.9 \text{ s} \). *n.b.* This practice is under review, and in the future UT1–UTC may grow essentially without limit.

4. The geographical coordinates are with respect to the WGS84 reference ellipsoid. **Take care with the longitude sign:** the longitude required by the present routine is east-positive (i.e. right-handed), in accordance with geographical convention.

5. The polar motion \(\text{XP,YP} \) can be obtained from IERS bulletins. The values are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians 0° and 90° west respectively. For many applications, \(\text{XP} \) and \(\text{YP} \) can be set to zero.

6. If \(h \), the height above the ellipsoid of the observing station in meters, is not known but \(p \), the pressure in hPa (\(\equiv \text{mB} \)), is available, an adequate estimate of \(h \) can be obtained from the expression

\[
h = -29.3 t_0 \log(p/1013.25)
\]

where \(t_0 \) is the approximate sea-level air temperature in K (See *Astrophysical Quantities*, C.W. Allen, 3rd edition, Section 52). Similarly, if the pressure \(p \) is not known, it can be estimated from the height of the observing station, \(h \), as follows:

\[
p = 1013.25 e^{-h/((29.3 t_0))}
\]

Note, however, that the refraction is nearly proportional to the pressure and that an accurate \(p \) value is important for precise work.

7. The argument \(\text{WL} \) specifies the observing wavelength in micrometers. The transition from optical to radio is assumed to occur at 100 \(\mu \text{m} \) (about 3000 GHz).

8. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.

9. In cases where the caller wishes to supply his own Earth rotation information and refraction constants, the routine \texttt{iau_APIO} can be used instead of the present routine.

10. The context array \texttt{ASTROM} produced by this routine is used by \texttt{iau_ATIOQ} and \texttt{iau_ATOIQ}.

CALL:
CALL iau_ATCI13 (RC, DC, PR, PD, PX, RV, DATE1, DATE2, RI, DI, EO)

ACTION:
Transform ICRS star data, epoch J2000.0, to CIRS.

GIVEN:

- **RC, DC** \(\rightarrow \) ICRS \([\alpha, \delta]\) at J2000.0 (radians, Note 1)
- **PR** \(\rightarrow \) RA proper motion (radians/year; Note 2)
- **PD** \(\rightarrow \) Dec proper motion (radians/year)
- **PX** \(\rightarrow \) parallax (arcsec)
- **RV** \(\rightarrow \) radial velocity (km/s, positive if receding)
- **DATE1** \(\rightarrow \) TDB as a 2-part...
- **DATE2** \(\rightarrow \) ...Julian Date (Note 3)

RETURNED:

- **RI, DI** \(\rightarrow \) CIRS geocentric \([\alpha, \delta]\) (radians)
- **EO** \(\rightarrow \) equation of the origins (ERA−GST, Note 5)

NOTES:

1. Star data for an epoch other than J2000.0 (for example from the Hipparcos catalog, which has an epoch of J1991.25) will require a preliminary call to iau_PMSAFE before use.

2. The proper motion in right ascension is \(\dot{\alpha} \) rather than \(\dot{\alpha} \cos \delta \).

3. The TDB date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the arguments DATE1 and DATE2. For example, JD(TDB) = 2450123.7 could be expressed in any of these ways, among others:

 - DATE1 DATE2
 - 2450123.7 0.0 (JD method)
 - 2451545.0 −1421.3 (J2000 method)
 - 2400000.5 50123.2 (MJD method)
 - 2450123.5 0.2 (date & time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. For most applications of this routine the choice will not be at all critical.

TT can be used instead of TDB without any significant impact on accuracy.
4. The available accuracy is better than 1 milliarcsecond, limited mainly by the precession-nutation model that is used, namely IAU 2000A/2006. Very close to solar system bodies, additional errors of up to several milliarcseconds can occur because of unmodeled light deflection; however, the Sun’s contribution is taken into account, to first order. The accuracy limitations of the SOFA routine `iau_EPV00` (used to compute Earth position and velocity) can contribute aberration errors of up to 5 microarcseconds. Light deflection at the Sun’s limb is uncertain at the 0.4 milliarcsecond level.

5. Should the transformation to (equinox based) apparent place be required rather than (CIO based) intermediate place, subtract the equation of the origins from the returned right ascension: \(\alpha_{\text{apparent}} = \alpha_{\text{CIRS}} - EO \). (The `iau_ANP` routine can then be applied, as required, to keep the result in the conventional 0-2\(\pi \) range.)
iau_ATCIQ \hspace{1cm} \textit{quick ICRS→CIRS} \hspace{1cm} **iau_ATCIQ**

CALL :

CALL iau_ATCIQ (RC, DC, PR, PD, PX, RV, ASTROM, RI, DI)

ACTION :

Quick ICRS, epoch J2000.0, to CIRS transformation, given precomputed star-independent astrometry parameters. Use of this routine is appropriate when efficiency is important and where many star positions are to be transformed for one date.

GIVEN :

- RC, DC \hspace{.1cm} d \hspace{.5cm} ICRS $[\alpha, \delta]$ at J2000.0 (radians, Note 1)
- PR \hspace{.1cm} d \hspace{.5cm} RA proper motion (radians/year; Note 2)
- PD \hspace{.1cm} d \hspace{.5cm} Dec proper motion (radians/year)
- PX \hspace{.1cm} d \hspace{.5cm} parallax (arcsec)
- RV \hspace{.1cm} d \hspace{.5cm} radial velocity (km/s, positive if receding)
- $ASTROM$ \hspace{.1cm} $d(30)$ \hspace{.5cm} star-independent astrometry parameters

RETURNED :

- RI, DI \hspace{.1cm} d \hspace{.5cm} CIRS geocentric $[\alpha, \delta]$ (radians)

NOTES :

1. Star data for an epoch other than J2000.0 (for example from the Hipparcos catalog, which has an epoch of J1991.25) will require a preliminary call to iau_PMSAFE before use.

2. The proper motion in right ascension is $\dot{\alpha}$ rather than $\dot{\alpha} \cos \delta$.

3. If the parallax and proper motions are zero, (or the supplied $[\alpha, \delta]$ is an astrometric place) the iau_ATCIQZ routine can be used instead.

4. The star-independent parameters can be obtained by calling one of the routines iau_APIO[13], iau_APCG[13], iau_APCO[13] or iau_APSC[13].
iau_ATC1QN \textit{quick ICRS} \rightarrow \textit{CIRS, multiple deflections} \textbf{iau_ATC1QN} \\

CALL :

CALL iau_ATC1QN (RC, DC, PR, PD, PX, RV, ASTROM, N, B, RI, DI)

ACTION :

Quick ICRS, epoch J2000.0, to CIRS transformation, given precomputed star-independent astrometry parameters plus a list of light-deflecting bodies. Use of this routine is appropriate when efficiency is important and where many star positions are to be transformed for one date.

GIVEN :

- **RC, DC** d
- **PR** d
- **PD** d
- **PX** d
- **RV** d
- **ASTROM** d(30)
- **N** i
- **B** d(8,N)

RETURNED :

- **RI, DI** d

NOTES :

1. Star data for an epoch other than J2000.0 (for example from the Hipparcos catalog, which has an epoch of J1991.25) will require a preliminary call to \textbf{iau_PMSAFE} before use.

2. The proper motion in right ascension is $\dot{\alpha}$ rather than $\dot{\alpha} \cos \delta$.

3. If the only light-deflecting body to be taken into account is the Sun, the \textbf{iau_ATC1Q} routine can be used instead. If in addition the parallax and proper motions are zero, the \textbf{iau_ATC1QZ} routine can be used.

4. The star-independent parameters can be obtained by calling one of the routines \textbf{iau_APIO[13]}, \textbf{iau_APCG[13]}, \textbf{iau_APCO[13]} or \textbf{iau_APCS[13]}.

5. The array B contains N entries, one for each body to be considered. If N = 0, no gravitational light deflection will be applied, not even for the Sun.

6. The array B should include an entry for the Sun as well as for any planet or other body to be taken into account. The entries should be in the order in which the light passes the body.
7. In the entry in the \(B \) array for body \(I \), the mass parameter \(B(1,I) \) can, as required, be adjusted in order to allow for such effects as quadrupole field.

8. The deflection limiter parameter \(B(2,I) \) is \(\phi^2/2 \), where \(\phi \) is the angular separation (in radians) between star and body at which limiting is applied. As \(\phi \) shrinks below the chosen threshold, the deflection is artificially reduced, reaching zero for \(\phi = 0 \). Example values suitable for a terrestrial observer, together with masses, are as follows:

<table>
<thead>
<tr>
<th>body I</th>
<th>(B(1,I))</th>
<th>(B(2,I))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>1D0</td>
<td>6D-6</td>
</tr>
<tr>
<td>Jupiter</td>
<td>0.0009543SD0</td>
<td>3D-9</td>
</tr>
<tr>
<td>Saturn</td>
<td>0.00028574D0</td>
<td>3D-10</td>
</tr>
</tbody>
</table>

9. For efficiency, validation of the contents of the \(B \) array is omitted. The supplied masses must be greater than zero, the position and velocity vectors must be right, and the deflection limiter greater than zero.
CALL: CALL iau_ATCIQZ (RC, DC, ASTROM, RI, DI)

ACTION: Quick ICRS to CIRS transformation, given precomputed star-independent astrometry parameters, and assuming zero parallax and proper motion (i.e. astrometric place). Use of this routine is appropriate when efficiency is important and where many star positions, all with parallax and proper motion either zero or already allowed for, are to be transformed for one date.

GIVEN:
- RC, DC d ICRS [α, δ]
- ASTROM d(30) star-independent astrometry parameters

RETURNED:
- RI, DI d CIRS geocentric [α, δ] (radians)

NOTES:
1. The corresponding routine for the case of non-zero parallax and proper motion is iau_ATCIQ.
2. The star-independent parameters can be obtained by calling one of the routines iau_APCI[13], iau_APCG[13], iau_APCO[13] or iau_APCS[13].
CALL:
CALL iau_ATCO13 (RC, DC, PR, PD, PX, RV, UTC1, UTC2, DUT1, ELONG,
 PHI, HM, XP, YP, PHPA, TC, RH, WL,
 AOB, ZOB, HOB, DOB, ROB, EO, J)

ACTION:
ICRS [α, δ] to observed place. The caller supplies UTC, site coordinates, ambient air
conditions and observing wavelength.

GIVEN:

\[
\begin{align*}
RC, DC & \quad d \quad \text{ICRS [α, δ] at J2000.0 (radians, Note 1)} \\
PR & \quad d \quad \text{RA proper motion (radians/year; Note 2)} \\
PD & \quad d \quad \text{Dec proper motion (radians/year)} \\
PX & \quad d \quad \text{parallax (arcsec)} \\
RV & \quad d \quad \text{radial velocity (km/s, positive if receding)} \\
UTC1 & \quad d \quad \text{UTC as a 2-part...} \\
UTC2 & \quad d \quad \text{... quasi Julian Date (Notes 3,4)} \\
DUT1 & \quad d \quad \text{UT1–UTC (seconds, Note 5)} \\
ELONG & \quad d \quad \text{longitude (radians, east-positive, Note 6)} \\
PHI & \quad d \quad \text{geodetic latitude (radians, Note 6)} \\
HM & \quad d \quad \text{height above ellipsoid (m, geodetic Notes 6,8)} \\
XP, YP & \quad d \quad \text{polar motion coordinates (radians, Note 7)} \\
PHPA & \quad d \quad \text{pressure at the observer (hPa ≡ mB, Note 8)} \\
TC & \quad d \quad \text{ambient temperature at the observer (deg C)} \\
RH & \quad d \quad \text{relative humidity at the observer (range 0-1)} \\
WL & \quad d \quad \text{wavelength (micrometers, Note 9)} \\
\end{align*}
\]

RETURNED:

\[
\begin{align*}
AOB & \quad d \quad \text{observed azimuth (radians: N=0°, E=90°)} \\
ZOB & \quad d \quad \text{observed zenith distance (radians)} \\
HOB & \quad d \quad \text{observed hour angle (radians)} \\
DOB & \quad d \quad \text{observed declination (radians)} \\
ROB & \quad d \quad \text{observed right ascension (CIO-based, radians)} \\
EO & \quad d \quad \text{equation of the origins (ERA−GST)} \\
J & \quad i \quad \text{status: +1 = dubious year (Note 4)} \\
 & \quad \quad \quad 0 = \quad \text{OK} \\
 & \quad \quad \quad -1 = \quad \text{unacceptable date}
\end{align*}
\]
NOTES:

1. Star data for an epoch other than J2000.0 (for example from the Hipparcos catalog, which has an epoch of J1991.25) will require a preliminary call to `iau_PMSAFE` before use.

2. The proper motion in right ascension is \(\dot{\alpha} \) rather than \(\dot{\alpha} \cos \delta \).

3. UTC1+UTC2 is quasi Julian Date (see Note 2), apportioned in any convenient way between the two arguments, for example where UTC1 is the Julian Day Number and UTC2 is the fraction of a day. However, JD cannot unambiguously represent UTC during a leap second unless special measures are taken. The convention in the present routine is that the JD day represents UTC days whether the length is 86399, 86400 or 86401 SI seconds.

Applications should use the routine `iau_DTF2D` to convert from calendar date and time of day into two-part quasi Julian Date, as it implements the leap-second-ambiguity convention just described.

4. The warning status “dubious year” flags UTCs that predate the introduction of the time scale or that are too far in the future to be trusted. See `iau_DAT` for further details.

5. UT1−UTC is tabulated in IERS bulletins. It increases by exactly one second at the end of each positive UTC leap second, introduced in order to keep UT1−UTC within \(\pm 0.9 \text{s} \). *n.b.* This practice is under review, and in the future UT1−UTC may grow essentially without limit.

6. The geographical coordinates are with respect to the WGS84 reference ellipsoid. **Take care with the longitude sign:** the longitude required by the present routine is east-positive (*i.e.* right-handed), in accordance with geographical convention.

7. The polar motion \(X_P, Y_P \) can be obtained from IERS bulletins. The values are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians 0° and 90° west respectively. For many applications, \(X_P \) and \(Y_P \) can be set to zero.

8. If \(h \), the height above the ellipsoid of the observing station in meters, is not known but \(p \), the pressure in hPa (≡mB), is available, an adequate estimate of \(h \) can be obtained from the expression

\[
h = -29.3 t_0 \log(p/1013.25)
\]

where \(t_0 \) is the approximate sea-level air temperature in K (See *Astrophysical Quantities*, C.W. Allen, 3rd edition, Section 52). Similarly, if the pressure \(p \) is not known, it can be estimated from the height of the observing station, \(h \), as follows:

\[
p = 1013.25 e^{-h/(29.3 t_0)}
\]

Note, however, that the refraction is nearly proportional to the pressure and that an accurate \(p \) value is important for precise work.
9. The argument WL specifies the observing wavelength in micrometers. The transition from optical to radio is assumed to occur at 100 μm (about 3000 GHz).

10. “Observed” azimuth and zenith distance means the position that would be seen by a perfect geodetically aligned theodolite. (Zenith distance is used rather than altitude in order to reflect the fact that no allowance is made for depression of the horizon.) This is related to the observed $[h, \delta]$ via the standard rotation, using the geodetic latitude (corrected for polar motion), while the observed h and α are related simply through the Earth rotation angle and the site longitude. “Observed” $[\alpha, \delta]$ or $[h, \delta]$ thus means the position that would be seen by a perfect equatorial with its polar axis aligned to the Earth’s axis of rotation.

11. The accuracy of the result is limited by the corrections for refraction, which use a simple $A \tan \zeta + B \tan^3 \zeta$ model. Providing the meteorological parameters are known accurately and there are no gross local effects, the predicted observed coordinates should be within 0'05 (optical) 1'' (radio) for $\zeta < 70^\circ$, better than 30'' (optical or radio) at 85° and better than 0'3 (optical) or 0'5 (radio) at the horizon.

Without refraction, the complementary routines iau_ATCO13 and iau_ATOC13 are self-consistent to better than 1 μas all over the celestial sphere. With refraction included, consistency falls off at high zenith distances, but is still better than 0'05 at $\zeta = 85^\circ$.

12. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.
CALL :
CALL iau_ATIC13 (RI, DI, DATE1, DATE2, RC, DC, EO)

ACTION :
Transform \([\alpha, \delta] \) from geocentric CIRS to ICRS astrometric.

GIVEN :
- \(RI, DI \) d CIRS geocentric \([\alpha, \delta] \) (radians)
- \(DATE1 \) d TDB as a 2-part...
- \(DATE2 \) d ...Julian Date (Note 1)

RETURNED :
- \(RC, DC \) d ICRS astrometric \([\alpha, \delta] \)
- \(EO \) d equation of the origins (ERA−GST, Note 4)

NOTES :
1. The TDB date \(DATE1+DATE2 \) is a Julian Date, apportioned in any convenient way between the arguments \(DATE1 \) and \(DATE2 \). For example, \(JD(TDB) = 2450123.7 \) could be expressed in any of these ways, among others:
 - \(DATE1 \) 2450123.7 \(DATE2 \) 0.0 (JD method)
 - \(DATE1 \) 2451545.0 \(DATE2 \) −1421.3 (J2000 method)
 - \(DATE1 \) 2400000.5 \(DATE2 \) 50123.2 (MJD method)
 - \(DATE1 \) 2450123.5 \(DATE2 \) 0.2 (date & time method)

 The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. For most applications of this routine the choice will not be at all critical.

 \(TT \) can be used instead of TDB without any significant impact on accuracy.

2. Iterative techniques are used for the aberration and light deflection corrections so that the routines \(iau_ATIC13 \) (or \(iau_ATICQ \)) and \(iau_ATCI13 \) (or \(iau_ATCIQ \)) are accurate inverses; even at the edge of the Sun’s disk the discrepancy is only about 1 nanoarcsecond.

3. The available accuracy is better than 1 milliarcsecond, limited mainly by the precession-nutation model that is used, namely IAU 2000A/2006. Very close to solar system bodies, additional errors of up to several milliarcseconds can occur because of unmodeled light deflection; however, the Sun’s contribution is taken into account, to first order. The accuracy limitations of the SOFA routine \(iau_EPV00 \) (used to compute Earth position and velocity) can contribute aberration errors of up to 5 microarcseconds. Light deflection at the Sun’s limb is uncertain at the 0.4 milliarcsecond level.
4. Should the transformation to (equinox based) J2000.0 mean place be required rather than (CIO based) ICRS coordinates, subtract the equation of the origins from the returned right ascension: \(\alpha_{\text{apparent}} = \alpha_{\text{CIRS}} - EO \). (The \texttt{iau_ANP} routine can then be applied, as required, to keep the result in the conventional 0-2\(\pi \) range.)
iau_ATICQ \quad \textit{quick CIRS→ICRS} \quad iau_ATICQ

\textbf{CALL}:

\texttt{CALL iau_ATICQ (RI, DI, ASTROM, RC, DC)}

\textbf{ACTION}:

Quick CIRS to ICRS astrometric place transformation, given the star-independent astrometry parameters. Use of this routine is appropriate when efficiency is important and where many star positions are all to be transformed for one date.

\textbf{GIVEN}:

\begin{tabular}{ll}
\textit{RI,DI} & d \quad \text{CIRS geocentric } [\alpha, \delta] \text{ (radians)} \\
\textit{ASTROM} & d(30) \quad \text{star-independent astrometry parameters}
\end{tabular}

\textbf{RETURNED}:

\begin{tabular}{ll}
\textit{RC,DC} & d \quad \text{ICRS astrometric } [\alpha, \delta]
\end{tabular}

\textbf{NOTES}:

1. Only the Sun is taken into account in the light deflection correction.

2. Iterative techniques are used for the aberration and light deflection corrections so that the routines \texttt{iau_ATIC13} (or \texttt{iau_ATICQ}) and \texttt{iau_ATCI13} (or \texttt{iau_ATCIQ}) are accurate inverses; even at the edge of the Sun’s disk the discrepancy is only about 1 nanoarcsecond.

3. The star-independent astrometry parameters can be obtained by calling one of the routines \texttt{iau_APCI[13]}, \texttt{iau_APCG[13]}, \texttt{iau_APC0[13]} or \texttt{iau_APCS[13]}.
CALL:
CALL iau_ATICQN (RI, DI, ASTROM, N, B, RC, DC)

ACTION:
Quick CIRS to ICRS astrometric place transformation, given precomputed star-independent astrometry parameters plus a list of light-deflecting bodies. Use of this routine is appropriate when efficiency is important and where many star positions are to be transformed for one date.

GIVEN:
\begin{align*}
 &RI, DI \quad d \quad \text{CIRS [} \alpha, \delta \text{] (radians)} \\
 &ASTROM \quad d(30) \quad \text{star-independent astrometry parameters} \\
 &N \quad i \quad \text{number of bodies (Note 4)} \\
 &B \quad d(8,N) \quad \text{data for each of the } N \text{ bodies (Notes 4-8)}
\end{align*}

RETURNED:
\begin{align*}
 &RC, DC \quad d \quad \text{ICRS [} \alpha, \delta \text{] at J2000.0 (radians)}
\end{align*}

NOTES:
1. Iterative techniques are used for the aberration and light deflection corrections so that the routines iau_ATICQN and iau_ATCIQN are accurate inverses; even at the edge of the Sun’s disk the discrepancy is only about 1 nanoarcsecond.

2. If the only light-deflecting body to be taken into account is the Sun, the iau_ATICQ routine can be used instead.

3. The star-independent parameters can be obtained by calling one of the routines iau_APIO[13], iau_APCG[13], iau_APCO[13] or iau_APCS[13].

4. The array B contains N entries, one for each body to be considered. If N = 0, no gravitational light deflection will be applied, not even for the Sun.

5. The array B should include an entry for the Sun as well as for any planet or other body to be taken into account. The entries should be in the order in which the light passes the body.

6. In the entry in the B array for body I, the mass parameter B(1,I) can, as required, be adjusted in order to allow for such effects as quadrupole field.

7. The deflection limiter parameter B(2,I) is \(\phi^2 / 2 \), where \(\phi \) is the angular separation (in radians) between star and body at which limiting is applied. As \(\phi \) shrinks below the chosen threshold, the deflection is artificially reduced, reaching zero for \(\phi = 0 \). Example values suitable for a terrestrial observer, together with masses, are as follows:
8. For efficiency, validation of the contents of the \(B \) array is omitted. The supplied masses must be greater than zero, the position and velocity vectors must be right, and the deflection limiter greater than zero.

<table>
<thead>
<tr>
<th>body (I)</th>
<th>(B(1,I))</th>
<th>(B(2,I))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>1D0</td>
<td>6D-6</td>
</tr>
<tr>
<td>Jupiter</td>
<td>0.00095435D0</td>
<td>3D-9</td>
</tr>
<tr>
<td>Saturn</td>
<td>0.00028574D0</td>
<td>3D-10</td>
</tr>
</tbody>
</table>
CALL:
CALL iau_ATIO13 (RI, DI, UTC1, UTC2, DUT1,
ELONG, PHI, HM, XP, YP,
PHPA, TC, RH, WL, AOB, ZOB, HOB, DOB, ROB, J)

ACTION:
CIRS $[\alpha, \delta]$ to observed place. The caller supplies UTC, site coordinates, ambient air conditions and observing wavelength.

GIVEN:
- RI, DI d CIRS $[\alpha, \delta]$ (radians)
- $UTC1$ d UTC as a 2-part...
- $UTC2$ d ...quasi Julian Date (Notes 1,2)
- $DUT1$ d UT1–UTC (seconds)
- $ELONG$ d longitude (radians, east-positive, Note 3)
- PHI d geodetic latitude (radians, Note 3)
- HM d height above ellipsoid (m, geodetic Notes 4,6)
- XP, YP d polar motion coordinates (radians, Note 5)
- $PHPA$ d pressure at the observer (hPa \equiv mB, Note 6)
- TC d ambient temperature at the observer (deg C)
- RH d relative humidity at the observer (range 0-1)
- WL d wavelength (micrometers, Note 7)

RETURNED:
- AOB d observed azimuth (radians: N=0°, E=90°)
- ZOB d observed zenith distance (radians)
- HOB d observed hour angle (radians)
- DOB d observed declination (radians)
- ROB d observed right ascension (CIO-based, radians)
- J i status: $+1$ = dubious year (Note 2)
 0 = OK
 -1 = unacceptable date

NOTES:
1. $UTC1+UTC2$ is quasi Julian Date (see Note 2), apportioned in any convenient way between the two arguments, for example where $UTC1$ is the Julian Day Number and $UTC2$ is the fraction of a day. However, JD cannot unambiguously represent UTC during a leap second unless special measures are taken. The convention in the present routine is that the JD day represents UTC days whether the length is 86399, 86400 or 86401 SI seconds.

Applications should use the routine iau_DTF2D to convert from calendar date and time of day into two-part quasi Julian Date, as it implements the leap-second-ambiguity convention just described.
2. The warning status “dubious year” flags UTCs that predate the introduction of the time scale or that are too far in the future to be trusted. See iau_DAT for further details.

3. UT1–UTC is tabulated in IERS bulletins. It increases by exactly one second at the end of each positive UTC leap second, introduced in order to keep UT1–UTC within ±0.9 s. n.b. This practice is under review, and in the future UT1–UTC may grow essentially without limit.

4. The geographical coordinates are with respect to the WGS84 reference ellipsoid. Take care with the longitude sign: the longitude required by the present routine is east-positive (i.e. right-handed), in accordance with geographical convention.

5. The polar motion XP,YP can be obtained from IERS bulletins. The values are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians 0° and 90° west respectively. For many applications, XP and YP can be set to zero.

6. If h, the height above the ellipsoid of the observing station in meters, is not known but p, the pressure in hPa (≡mB), is available, an adequate estimate of h can be obtained from the expression

\[h = -29.3t_0 \log(p/1013.25) \]

where \(t_0 \) is the approximate sea-level air temperature in K (See Astrophysical Quantities, C.W. Allen, 3rd edition, Section 52). Similarly, if the pressure p is not known, it can be estimated from the height of the observing station, h, as follows:

\[p = 1013.25e^{-h/(29.3t_0)} \]

Note, however, that the refraction is nearly proportional to the pressure and that an accurate p value is important for precise work.

7. The argument \(\varphi \) specifies the observing wavelength in micrometers. The transition from optical to radio is assumed to occur at 100 \(\mu \)m (about 3000 GHz).

8. “Observed” azimuth and zenith distance means the position that would be seen by a perfect geodetically aligned theodolite. (Zenith distance is used rather than altitude in order to reflect the fact that no allowance is made for depression of the horizon.) This is related to the observed \([h, \delta]\) via the standard rotation, using the geodetic latitude (corrected for polar motion), while the observed \(h \) and \(\alpha \) are related simply through the Earth rotation angle and the site longitude. “Observed” \([\alpha, \delta]\) or \([h, \delta]\) thus means the position that would be seen by a perfect equatorial with its polar axis aligned to the Earth’s axis of rotation.

9. The accuracy of the result is limited by the corrections for refraction, which use a simple \(A \tan \zeta + B \tan^3 \zeta \) model. Providing the meteorological parameters are known accurately and there are no gross local effects, the predicted observed coordinates should be within 0°05 (optical) 1° (radio) for \(\zeta < 70^\circ \), better than 30° (optical or radio) at 85° and better than 0°3 (optical) or 0°5 (radio) at the horizon.
Without refraction, the complementary routines \texttt{iau_ATI013} and \texttt{iau_ATOI13} are self-consistent to better than 1\,µas all over the celestial sphere. With refraction included, consistency falls off at high zenith distances, but is still better than 0.05 at $\zeta = 85^\circ$.

10. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.
CALL : iau_ATIOQ (RI, DI, ASTROM, AOB, ZOB, HOB, DOB, ROB)

ACTION :
Quick CIRS to observed place transformation.

GIVEN :
RI,DI \(d \) CIRS \([\alpha, \delta]\) (radians)
ASTROM \(d(30) \) star-independent astrometry parameters

RETURNED :
AOB \(d \) observed azimuth (radians: N=0°, E=90°)
ZOB \(d \) observed zenith distance (radians)
HOB \(d \) observed hour angle (radians)
DOB \(d \) observed declination (radians)
ROB \(d \) observed right ascension (CIO-based, radians)

NOTES :
1. This routine returns zenith distance rather than altitude in order to reflect the fact that no allowance is made for depression of the horizon.

2. The accuracy of the result is limited by the corrections for refraction, which use a simple \(A \tan \zeta + B \tan^3 \zeta \) model. Providing the meteorological parameters are known accurately and there are no gross local effects, the predicted observed coordinates should be within 0′05 (optical) 1′ (radio) for \(\zeta < 70° \), better than 30′ (optical or radio) at 85° and better than 0′3 (optical) or 0′5 (radio) at the horizon.

Without refraction, the complementary routines iau_ATIQ and iau_AT0IQ are self-consistent to better than 1 μas all over the celestial sphere. With refraction included, consistency falls off at high zenith distances, but is still better than 0′05 at \(\zeta = 85° \).

3. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.

4. The CIRS \([\alpha, \delta]\) is obtained from a star catalog mean place by allowing for space motion, parallax, the Sun’s gravitational lens effect, annual aberration and precession-nutation. For star positions in the ICRS, these effects can be applied by means of the iau_ATCI13 (etc.) routines. Starting from classical “mean place” systems, additional transformations will be needed first.

5. “Observed” azimuth and zenith distance means the position that would be seen by a perfect geodetically aligned theodolite. (Zenith distance is used rather than altitude in order to reflect the fact that no allowance is made for depression of the horizon.) This is related to the observed \([h, \delta]\) via the standard rotation, using the geodetic latitude (corrected for polar motion), while the observed \(h \) and \(\alpha \) are related simply through the Earth rotation angle and the site longitude. “Observed” \([\alpha, \delta]\) or \([h, \delta]\) thus means the position that would be seen by a perfect equatorial observer and with its polar axis aligned to the Earth’s axis of rotation.
6. The star-independent astrometry parameters in ASTROM may be computed with `iau_API0[13]` or `iau_APC0[13]`. If nothing has changed significantly except the time, `iau_APER[13]` may be used to perform the requisite adjustment to the ASTROM array.
CALL:

CALL iau_ATOC13 (TYPE, OB1, OB2, UTC1, UTC2, DUT1,
 ELONG, PHI, HM, XP, YP, PHPA, TC, RH, WL, RC, DC, J)

ACTION:

Observed place at a groundbased site to ICRS astrometric \([\alpha, \delta]\). The caller supplies UTC,
site coordinates, ambient air conditions and observing wavelength.

GIVEN:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>c*(*)</th>
<th>type of coordinates – R, H or A (Notes 1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB1</td>
<td>d</td>
<td>observed Az, HA or RA (radians; Az is N=0(^\circ), E=90(^\circ))</td>
</tr>
<tr>
<td>OB2</td>
<td>d</td>
<td>observed ZD or Dec (radians)</td>
</tr>
<tr>
<td>UTC1</td>
<td>d</td>
<td>UTC as a 2-part...</td>
</tr>
<tr>
<td>UTC2</td>
<td>d</td>
<td>...quasi Julian Date (Notes 3,4)</td>
</tr>
<tr>
<td>DUT1</td>
<td>d</td>
<td>UT1−UTC (seconds, Note 5)</td>
</tr>
<tr>
<td>ELONG</td>
<td>d</td>
<td>longitude (radians, east-positive, Note 6)</td>
</tr>
<tr>
<td>PHI</td>
<td>d</td>
<td>geodetic latitude (radians, Note 6)</td>
</tr>
<tr>
<td>HM</td>
<td>d</td>
<td>height above ellipsoid (m, geodetic Notes 6,8)</td>
</tr>
<tr>
<td>XP,YP</td>
<td>d</td>
<td>polar motion coordinates (radians, Note 7)</td>
</tr>
<tr>
<td>PHPA</td>
<td>d</td>
<td>pressure at the observer (hPa (\equiv) mB, Note 8)</td>
</tr>
<tr>
<td>TC</td>
<td>d</td>
<td>ambient temperature at the observer (deg C)</td>
</tr>
<tr>
<td>RH</td>
<td>d</td>
<td>relative humidity at the observer (range 0-1)</td>
</tr>
<tr>
<td>WL</td>
<td>d</td>
<td>wavelength (micrometers, Note 9)</td>
</tr>
</tbody>
</table>

RETURNED:

<table>
<thead>
<tr>
<th>RC,DC</th>
<th>d</th>
<th>ICRS astrometric ([\alpha,\delta])</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>i</td>
<td>status: +1 = dubious year (Note 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1 = unacceptable date</td>
</tr>
</tbody>
</table>

NOTES:

1. “Observed” azimuth and zenith distance means the position that would be seen by a
 perfect geodetically aligned theodolite. (Zenith distance is used rather than altitude
in order to reflect the fact that no allowance is made for depression of the horizon.)
 This is related to the observed \([h,\delta]\) via the standard rotation, using the geodetic
 latitude (corrected for polar motion), while the observed \(h\) and \(\alpha\) are related simply
 through the Earth rotation angle and the site longitude. “Observed” \([\alpha,\delta]\) or \([h,\delta]\)
 thus means the position that would be seen by a perfect equatorial with its polar axis
 aligned to the Earth’s axis of rotation.
2. Only the first character of the `TYPE` argument is significant. ‘R’ or ‘r’ indicates that \(\Omega_1 \) and \(\Omega_2 \) are the observed right ascension and declination; ‘H’ or ‘h’ indicates that they are hour angle (west-positive) and declination; anything else (‘A’ or ‘a’ is recommended) indicates that \(\Omega_1 \) and \(\Omega_2 \) are azimuth (north zero, east deg 90) and zenith distance.

3. UTC1+UTC2 is quasi Julian Date (see Note 4), apportioned in any convenient way between the two arguments, for example where UTC1 is the Julian Day Number and UTC2 is the fraction of a day. However, JD cannot unambiguously represent UTC during a leap second unless special measures are taken. The convention in the present routine is that the JD day represents UTC days whether the length is 86399, 86400 or 86401 SI seconds.

Applications should use the routine `iau_DTF2D` to convert from calendar date and time of day into two-part quasi Julian Date, as it implements the leap-second-ambiguity convention just described.

4. The warning status “dubious year” flags UTCs that predate the introduction of the time scale or that are too far in the future to be trusted. See `iau_DAT` for further details.

5. UT1−UTC is tabulated in IERS bulletins. It increases by exactly one second at the end of each positive UTC leap second, introduced in order to keep UT1−UTC within \(\pm 0.9 \) s. \(n.b. \) This practice is under review, and in the future UT1−UTC may grow essentially without limit.

6. The geographical coordinates are with respect to the WGS84 reference ellipsoid. **Take care with the longitude sign:** the longitude required by the present routine is east-positive (i.e., right-handed), in accordance with geographical convention.

7. The polar motion \(\mathbf{X}_P, \mathbf{Y}_P \) can be obtained from IERS bulletins. The values are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians 0° and 90° west respectively. For many applications, \(\mathbf{X}_P \) and \(\mathbf{Y}_P \) can be set to zero.

8. If \(h \), the height above the ellipsoid of the observing station in meters, is not known but \(p \), the pressure in hPa (≡mB), is available, an adequate estimate of \(h \) can be obtained from the expression

\[
h = -29.3 t_0 \log(p/1013.25)\]

where \(t_0 \) is the approximate sea-level air temperature in K (See Astrophysical Quantities, C.W. Allen, 3rd edition, Section 52). Similarly, if the pressure \(p \) is not known, it can be estimated from the height of the observing station, \(h \), as follows:

\[
p = 1013.25 e^{-h/(29.3t_0)}\]

Note, however, that the refraction is nearly proportional to the pressure and that an accurate \(p \) value is important for precise work.

9. The argument \(\mathbf{\lambda}_L \) specifies the observing wavelength in micrometers. The transition from optical to radio is assumed to occur at 100 \(\mu \)m (about 3000 GHz).
10. The accuracy of the result is limited by the corrections for refraction, which use a simple $A \tan \zeta + B \tan^3 \zeta$ model. Providing the meteorological parameters are known accurately and there are no gross local effects, the predicted observed coordinates should be within $0\:'05$ (optical) $1''$ (radio) for $\zeta < 70^\circ$, better than $30''$ (optical or radio) at 85° and better than $0\:'3$ (optical) or $0\:'5$ (radio) at the horizon.

Without refraction, the complementary routines `iau_ATCO13` and `iau_ATOC13` are self-consistent to better than 1μas all over the celestial sphere. With refraction included, consistency falls off at high zenith distances, but is still better than $0\:'05$ at $\zeta = 85^\circ$.

11. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.
CALL:

CALL iau_ATOI13 (TYPE, OB1, OB2, UTC1, UTC2, DUT1, ELONG, PHI, HM, XP, YP, PHPA, TC, RH, WL, RI, DI, J)

ACTION:

Observed place to CIRS. The caller supplies UTC, site coordinates, ambient air conditions and observing wavelength.

GIVEN:

TYPE	d	type of coordinates – R, H or A (Notes 1,2)
OB1	d	observed Az, HA or RA (radians; Az is N=0°, E=90°)
OB2	d	observed ZD or Dec (radians)
UTC1	d	UTC as a 2-part...
UTC2	d	...quasi Julian Date (Notes 3,4)
DUT1	d	UT1−UTC (seconds, Note 5)
ELONG	d	longitude (radians, east-positive, Note 6)
PHI	d	geodetic latitude (radians, Note 6)
HM	d	height above ellipsoid (m, geodetic Notes 6,8)
XP,YP	d	polar motion coordinates (radians, Note 7)
PHPA	d	pressure at the observer (hPa ≡ mB, Note 8)
TC	d	ambient temperature at the observer (deg C)
RH	d	relative humidity at the observer (range 0-1)
WL	d	wavelength (micrometers, Note 9)

RETURNED:

RI,DI	d	CIRS [α, δ] (radians)
J	i	status: +1 = dubious year (Note 4)
	0	OK
	-1	unacceptable date

NOTES:

1. “Observed” azimuth and zenith distance means the position that would be seen by a perfect geodetically aligned theodolite. (Zenith distance is used rather than altitude in order to reflect the fact that no allowance is made for depression of the horizon.) This is related to the observed [h, δ] via the standard rotation, using the geodetic latitude (corrected for polar motion), while the observed h and α are related simply through the Earth rotation angle and the site longitude. “Observed” [α, δ] or [h, δ] thus means the position that would be seen by a perfect equatorial with its polar axis aligned to the Earth’s axis of rotation.
2. Only the first character of the TYPE argument is significant. ‘R’ or ‘r’ indicates that OB1 and OB2 are the observed right ascension and declination; ‘H’ or ‘h’ indicates that they are hour angle (west-positive) and declination; anything else (‘A’ or ‘a’ is recommended) indicates that OB1 and OB2 are azimuth (north zero, east deg 90) and zenith distance.

3. UTC1+UTC2 is quasi Julian Date (see Note 4), apportioned in any convenient way between the two arguments, for example where UTC1 is the Julian Day Number and UTC2 is the fraction of a day. However, JD cannot unambiguously represent UTC during a leap second unless special measures are taken. The convention in the present routine is that the JD day represents UTC days whether the length is 86399, 86400 or 86401 SI seconds.

Applications should use the routine iau_DTF2D to convert from calendar date and time of day into two-part quasi Julian Date, as it implements the leap-second-ambiguity convention just described.

4. The warning status “dubious year” flags UTCs that predate the introduction of the time scale or that are too far in the future to be trusted. See iau_DAT for further details.

5. UT1–UTC is tabulated in IERS bulletins. It increases by exactly one second at the end of each positive UTC leap second, introduced in order to keep UT1–UTC within ±0.9 s. n.b. This practice is under review, and in the future UT1–UTC may grow essentially without limit.

6. The geographical coordinates are with respect to the WGS84 reference ellipsoid. Take care with the longitude sign: the longitude required by the present routine is east-positive (i.e. right-handed), in accordance with geographical convention.

7. The polar motion XP,YP can be obtained from IERS bulletins. The values are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians 0° and 90° west respectively. For many applications, XP and YP can be set to zero.

8. If h, the height above the ellipsoid of the observing station in meters, is not known but p, the pressure in hPa (≡mB), is available, an adequate estimate of h can be obtained from the expression

\[h = -29.3 \, t_0 \log(p/1013.25) \]

where \(t_0 \) is the approximate sea-level air temperature in K (See Astrophysical Quantities, C.W. Allen, 3rd edition, Section 52). Similarly, if the pressure \(p \) is not known, it can be estimated from the height of the observing station, \(h \), as follows:

\[p = 1013.25 \, e^{-h/(29.3t_0)} \]

Note, however, that the refraction is nearly proportional to the pressure and that an accurate \(p \) value is important for precise work.

9. The argument WL specifies the observing wavelength in micrometers. The transition from optical to radio is assumed to occur at 100 μm (about 3000 GHz).
10. The accuracy of the result is limited by the corrections for refraction, which use a simple $A \tan \zeta + B \tan^3 \zeta$ model. Providing the meteorological parameters are known accurately and there are no gross local effects, the predicted observed coordinates should be within 0′05 (optical) 1″ (radio) for $\zeta < 70^\circ$, better than 30″ (optical or radio) at 85° and better than 0′3 (optical) or 0′5 (radio) at the horizon.

Without refraction, the complementary routines `iau_ATIO13` and `iau_ATOI13` are self-consistent to better than 1 µas all over the celestial sphere. With refraction included, consistency falls off at high zenith distances, but is still better than 0′05 at $\zeta = 85^\circ$.

11. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.
CALL iau_ATOIQ (TYPE, OB1, OB2, ASTROM, RI, DI)

ACTION:
Quick observed place to CIRS transformation, given the star-independent astrometry parameters.

GIVEN:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>c(*)</th>
<th>type of coordinates – R, H or A (Notes 1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB1</td>
<td>d</td>
<td>observed Az, HA or RA (radians; Az is N=0°, E=90°)</td>
</tr>
<tr>
<td>OB2</td>
<td>d</td>
<td>observed ZD or Dec (radians)</td>
</tr>
<tr>
<td>ASTROM</td>
<td>d(30)</td>
<td>star-independent astrometry parameters</td>
</tr>
</tbody>
</table>

RETURNED:

| RI, DI | d | CIRS [α, δ] (radians) |

NOTES:

1. Only the first character of the TYPE argument is significant. ‘R’ or ‘r’ indicates that OB1 and OB2 are the observed right ascension and declination; ‘H’ or ‘h’ indicates that they are hour angle (west-positive) and declination; anything else (‘A’ or ‘a’ is recommended) indicates that OB1 and OB2 are azimuth (north zero, east degi90) and zenith distance.

2. “Observed” azimuth and zenith distance means the position that would be seen by a perfect geodetically aligned theodolite. (Zenith distance is used rather than altitude in order to reflect the fact that no allowance is made for depression of the horizon.) This is related to the observed [h, δ] via the standard rotation, using the geodetic latitude (corrected for polar motion), while the observed h and α are related simply through the Earth rotation angle and the site longitude. “Observed” [α, δ] or [h, δ] thus means the position that would be seen by a perfect equatorial with its polar axis aligned to the Earth’s axis of rotation.

3. The accuracy of the result is limited by the corrections for refraction, which use a simple $A \tan \zeta + B \tan^3 \zeta$ model. Providing the meteorological parameters are known accurately and there are no gross local effects, the predicted observed coordinates should be within 0′05 (optical) 1″ (radio) for $\zeta < 70^\circ$, better than 30″ (optical or radio) at 85° and better than 0′3 (optical) or 0′5 (radio) at the horizon.

Without refraction, the complementary routines iau_ATIOQ and iau_ATOIQ are self-consistent to better than 1 µas all over the celestial sphere. With refraction included, consistency falls off at high zenith distances, but is still better than 0′05 at $\zeta = 85^\circ$.

4. It is advisable to take great care with units, as even unlikely values of the input parameters are accepted and processed in accordance with the models used.

5. The star-independent astrometry parameters in ASTROM may be computed with iau_API0[13] or iau_APIO[13]. If nothing has changed significantly except the time, iau_APER[13] may be used to perform the requisite adjustment to the ASTROM array.
CALL:
CALL iau_HD2AE (HA, DEC, PHI, AZ, EL)

ACTION:
Horizon to equatorial coordinates: transform hour angle and declination to azimuth and altitude.

GIVEN:
\(HA \)
\(d \)
hour angle
\(DEC \)
\(d \)
declination
\(PHI \)
\(d \)
site latitude (Note 3)

RETURNED:
\(AZ \)
\(d \)
azimuth
\(EL \)
\(d \)
elevation (\(\equiv \) altitude)

NOTES:
1. All the arguments are angles in radians.
2. Azimuth is returned in the range \(0 - 2\pi \); north is zero, and east is \(+\pi/2 \). Altitude is returned in the range \(\pm \pi/2 \).
3. The latitude \(PHI \) is \(\pi/2 \) minus the angle between the Earth’s rotation axis and the adopted zenith (Note 5). In many applications it will be sufficient to use the published geodetic latitude of the site. In very precise (sub-arcsecond) applications, \(PHI \) can be corrected for polar motion.
4. The returned azimuth \(AZ \) is with respect to the rotational north pole, as opposed to the ITRS pole, and for sub-arcsecond accuracy will need to be adjusted for polar motion if it is to be with respect to north on a map of the Earth’s surface.
5. Should the user wish to work with respect to the astronomical horizon rather than the geodetic horizon, \(PHI \) will need to be adjusted for deflection of the vertical (often tens of arcseconds), and the zero point of \(HA \) will also be affected.
6. The transformation is the same as \(V_h = R_z(\pi)R_y(\pi/2 - \phi)V_e \), where \(V_h \) and \(V_e \) are lefthanded unit vectors in the \([Az,El] \) and \([h,\delta] \) systems respectively and \(R_y \) and \(R_z \) are rotations about first the \(y \)-axis and then the \(z \)-axis. (n.b. \(R_z(\pi) \) simply reverses the signs of the \(x \) and \(y \) components.) For efficiency, the algorithm is written out rather than calling other utility functions. For applications that require even greater efficiency, additional savings are possible if constant terms such as functions of latitude are computed once and for all.
7. Again for efficiency, no range checking of arguments is carried out.
CALL:

\(PA = \text{iau_HD2PA}(\ HA, \ DEC, \ PHI) \)

ACTION:
Parallactic angle for a given hour angle and declination.

GIVEN:

- \(HA \) \(d \) hour angle
- \(DEC \) \(d \) declination
- \(PHI \) \(d \) site latitude (Note 5)

RETURNED (function value):

- \(d \) parallactic angle

NOTES:

1. All the arguments, and the result, are angles in radians.

2. The parallactic angle at a point in the sky is the position angle of the vertical, \(i.e. \) the angle between the directions to the north celestial pole and to the zenith respectively.

3. The result is returned in the range \(\pm \pi \).

4. At the pole itself a zero result is returned.

5. The latitude \(PHI \) is \(\pi/2 \) minus the angle between the Earth’s rotation axis and the adopted zenith (Note 6). In many applications it will be sufficient to use the published geodetic latitude of the site. In very precise (sub-arcsecond) applications, \(PHI \) can be corrected for polar motion.

6. Should the user wish to work with respect to the astronomical zenith rather than the geodetic zenith, \(PHI \) will need to be adjusted for deflection of the vertical (often tens of arcseconds), and the zero point of the hour angle \(HA \) will also be affected.
iau_LD *light deflection by a solar-system body*

CALL:
CALL iau_LD (BM, P, Q, E, EM, DLIM, P1)

ACTION:
Apply light deflection by a solar-system body, as part of transforming coordinate direction into natural direction.

GIVEN:
- **BM** d
 mass of the gravitating body (solar masses)
- **P** d(3)
 direction from observer to source (unit vector)
- **Q** d(3)
 direction from body to source (unit vector)
- **E** d(3)
 direction from body to observer (unit vector)
- **EM** d
 distance from body to observer (au)
- **DLIM** d
 deflection limiter (Note 4)

RETURNED:
- **P1** d(3)
 observer to deflected source (unit vector)

NOTES:
1. The algorithm is based on Eq. (70) in Klioner (2003) and Eq. (7.63) in Urban & Seidelmann (2013), with some rearrangement to minimize the effects of machine precision.
2. The mass parameter **BM** can, as required, be adjusted in order to allow for such effects as quadrupole field.
3. The barycentric position of the deflecting body should ideally correspond to the time of closest approach of the light ray to the body.
4. The deflection limiter parameter **DLIM** is $\phi^2/2$, where ϕ is the separation (in radians) between star and body at which limiting is applied. As ϕ shrinks below the chosen threshold, the deflection is artificially reduced, reaching zero for $\phi = 0$.
5. The returned vector **P1** is not normalized, but the consequential departure from unit magnitude is always negligible.
6. To accumulate total light deflection taking into account the contributions from several bodies, call the present routine for each body in succession, in decreasing order of distance from the observer.
7. For efficiency, validation is omitted. The supplied vectors must be of unit magnitude, and the deflection limiter non-zero and positive.
iau_LDN
light deflection by n solar-system bodies

CALL:

```
CALL iau_LDN ( N, B, OB, SC, SN )
```

ACTION:

For a star, apply light deflection by multiple solar-system bodies, as part of transforming coordinate direction into natural direction.

GIVEN:

- N \(\text{number of bodies (Note 1)} \)
- B \(d(8,N) \) \(\text{data for each of the N bodies (Notes 1,2)} \)
- OB \(d(3) \) \(\text{barycentric position of the observer (au)} \)
- SC \(d(3) \) \(\text{observer to star coordinate direction (unit vector)} \)

RETURNED:

- SN \(d(3) \) \(\text{observer to deflected star (unit vector)} \)

NOTES:

1. The array B contains N entries, one for each body to be considered. If $N = 0$, no gravitational light deflection will be applied, not even for the Sun.

2. The array B should include an entry for the Sun as well as for any planet or other body to be taken into account. The entries should be in the order in which the light passes the body.

3. In the entry in the B array for body I, the mass parameter $B(1,I)$ can, as required, be adjusted in order to allow for such effects as quadrupole field.

4. The deflection limiter parameter $B(2,I)$ is $\phi^2 / 2$, where ϕ is the angular separation (in radians) between star and body at which limiting is applied. As ϕ shrinks below the chosen threshold, the deflection is artificially reduced, reaching zero for $\phi = 0$. Example values suitable for a terrestrial observer, together with masses, are as follows:

<table>
<thead>
<tr>
<th>body I</th>
<th>$B(1,I)$</th>
<th>$B(2,I)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>1D0</td>
<td>6D-6</td>
</tr>
<tr>
<td>Jupiter</td>
<td>0.00095435D0</td>
<td>3D-9</td>
</tr>
<tr>
<td>Saturn</td>
<td>0.00028574D0</td>
<td>3D-10</td>
</tr>
</tbody>
</table>

5. For cases where the starlight passes the body before reaching the observer, the body is placed back along its barycentric track by the light time from that point to the observer. For cases where the body is “behind” the observer no such shift is applied. If a different treatment is preferred, the user has the option of instead using the iau_LD routine. Similarly, iau_LD can be used for cases where the source is nearby, not a star.

6. The returned vector SN is not normalized, but the consequential departure from unit magnitude is always negligible.

7. For efficiency, validation is omitted. The supplied masses must be greater than zero, the position and velocity vectors must be right, and the deflection limiter greater than zero.
CALL:
CALL iau_LDSUN (P, E, EM, P1)

ACTION:
Deflection of starlight by the Sun.

GIVEN:
P	d(3)	direction from observer to star (unit vector)
E	d(3)	direction from body to observer (unit vector)
EM	d	distance from body to observer (au)

RETURNED:
| P1 | d(3) | observer to deflected star (unit vector) |

NOTES:
1. The source is presumed to be sufficiently distant that its directions seen from the Sun and the observer are essentially the same.
2. The deflection is restrained when the angle between the star and the center of the Sun is less than a threshold value, falling to zero deflection for zero separation. The chosen threshold value is within the solar limb for all solar-system applications, and is about 5 arcminutes for the case of a terrestrial observer.
CALL :
CALL iau_PMPX (RC, DC, PR, PD, PX, RV, PMT, POB, PCO)

ACTION :
Proper motion and parallax.

GIVEN :
\(RC, DC \) \(d \) \(\text{ICRS } [\alpha, \delta] \) at catalog epoch (radians)
\(PR \) \(d \) \(\text{RA proper motion (radians/year; Note 1)} \)
\(PD \) \(d \) \(\text{Dec proper motion (radians/year)} \)
\(PX \) \(d \) \(\text{parallax (arcsec)} \)
\(RV \) \(d \) \(\text{radial velocity (km/s, positive if receding)} \)
\(PMT \) \(d \) \(\text{proper motion time interval (SSB, Julian years)} \)
\(POB \) \(d(3) \) \(\text{SSB to observer vector (au)} \)

RETURNED :
\(PCO \) \(d(3) \) \(\text{coordinate direction (BCRS unit vector)} \)

NOTES :
1. The proper motion in right ascension is \(\dot{\alpha} \) rather than \(\dot{\alpha} \cos \delta \).
2. To avoid the need for iteration, the Rømer effect (i.e., the small annual modulation of the proper motion coming from the changing light time) is applied approximately, using the direction of the star at the catalog epoch.
3. The algorithm used is non-relativistic: see the 1984 *Astronomical Almanac*, pp B39-B41, and Chapter 3 in Urban & Seidelmann (2013). An alternative implementation that uses an SR-compliant algorithm is given in Appendix A.
CALL:
CALL iau_PMSAFE (RA1, DEC1, PMR1, PMD1, PX1, RV1, EP1A, EP1B, EP2A, EP2B, RA2, DEC2, PMR2, PMD2, PX2, RV2, J)

ACTION:
Star proper motion: update star catalog data for space motion, with special handling to handle the zero parallax case.

GIVEN:
- **RA1**: d α (radians), before
- **DEC1**: d δ (radians), before
- **PMR1**: d α proper motion (radians/year), before
- **PMD1**: d δ proper motion (radians/year), before
- **PX1**: d parallax (arcseconds), before
- **RV1**: d radial velocity (km/s, +ve = receding), before
- **EP1A**: d “before” epoch, part A (Note 1)
- **EP1B**: d “before” epoch, part B (Note 1)
- **EP2A**: d “after” epoch, part A (Note 1)
- **EP2B**: d “after” epoch, part B (Note 1)

RETURNED:
- **RA2**: d α (radians), after
- **DEC2**: d δ (radians), after
- **PMR2**: d α proper motion (radians/year), after
- **PMD2**: d δ proper motion (radians/year), after
- **PX2**: d parallax (arcseconds), after
- **RV2**: d radial velocity (km/s, +ve = receding), after
- **J**: i status:
 - −1 = system error (should not occur)
 - 0 = no warnings or errors
 - 1 = distance overridden (Note 6)
 - 2 = excessive velocity (Note 7)
 - 4 = solution didn’t converge (Note 8)
 - else = binary logical OR of the above warnings

NOTES:

1. The starting and ending TDB epochs EP1A+EP1B and EP2A+EP2B are Julian Dates, apportioned in any convenient way between the two parts (A and B). For example, JD(TDB) = 2450123.7 could be expressed in any of these ways, among others:
<table>
<thead>
<tr>
<th>EPnA</th>
<th>EPnB</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2450123.7</td>
<td>0.0</td>
<td>(JD method)</td>
</tr>
<tr>
<td>2451545.0</td>
<td>-1421.3</td>
<td>(J2000 method)</td>
</tr>
<tr>
<td>2400000.5</td>
<td>50123.2</td>
<td>(MJD method)</td>
</tr>
<tr>
<td>2450123.5</td>
<td>0.2</td>
<td>(date & time method)</td>
</tr>
</tbody>
</table>

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. For most applications of this function the choice will not be at all critical.

2. In accordance with normal star-catalog conventions, the object’s right ascension and declination are freed from the effects of secular aberration. The frame, which is aligned to the catalog equator and equinox, is Lorentzian and centered on the SSB.

3. The proper motions are the rate of change of the right ascension and declination at the catalog epoch and are in radians per TDB Julian year.

4. The parallax and radial velocity are in the same frame.

5. Care is needed with units. The star coordinates are in radians and the proper motions in radians per Julian year, but the parallax is in arcseconds.

6. The α proper motion is in terms of coordinate angle, not true angle on the sky. If the catalog uses arcseconds (or mas etc.) not just for μ_δ but for μ_α as well, the tabulated α proper motion will need to be divided by $\cos \delta$ before use with the present routine.

7. Straight-line motion at constant speed, in the inertial frame, is assumed.

8. An extremely small (or zero or negative) parallax is overridden to ensure that the object is at a finite but very large distance, but not so large that the proper motion is equivalent to a large but safe speed (about 0.1c using the chosen constant). A warning status of 1 is added to the status if this action has been taken.

9. If the space velocity is a significant fraction of c (see the constant VMAX in the routine iau_STARPV), it is arbitrarily set to zero. When this action occurs, 2 is added to the status.

10. The relativistic adjustment carried out in the iau_STARPV routine involves an iterative calculation. If the process fails to converge within a set number of iterations, 4 is added to the status.
CALL:
CALL iau_PVTOB (ELONG, PHI, HM, XP, YP, SP, THETA, PV)

ACTION:
 Position and velocity of a terrestrial observing station.

GIVEN:
 $ELONG$ d longitude (radians, east-positive, Note 1)
 PHI d latitude (geodetic, radians, Note 1)
 HM d height above reference ellipsoid (geodetic, m)
 XP,YP d coordinates of the pole (radians, Note 2)
 SP d the TIO locator s' (radians, Note 2)
 $THETA$ d Earth rotation angle (radians, Note 3)

RETURNED:
 PV d($3,2$) position/velocity vector (m, m/s, CIRS)

NOTES:
1. The terrestrial coordinates are with respect to the WGS84 reference ellipsoid.
2. XP,YP are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System, measured along the meridians 0° and deg90 west respectively; see McCarthy & Petit (2003), Chapter 5. SP is the TIO locator s', in radians, which positions the Terrestrial Intermediate Origin on the equator. For many applications, XP,YP and (especially) SP can be set to zero.
3. If $THETA$ is Greenwich apparent sidereal time instead of Earth rotation angle, the result is with respect to the true equator and equinox of date, i.e. with the x-axis at the equinox rather than the celestial intermediate origin.
4. The velocity units are meters per UT1 second, not per SI second. This is unlikely to have any practical consequences in the modern era.
5. No validation is performed on the arguments. Error cases that could lead to arithmetic exceptions are trapped by the iau_GD2GC routine, and the result set to zeros.
CALL :
CALL iau_REFCO (PHPA, TC, RH, WL, REFA, REFB)

ACTION :
Determine the constants A and B in the atmospheric refraction model

$$\Delta \zeta = A \tan \zeta + B \tan^3 \zeta.$$

\(\zeta\) is the “observed” zenith distance (i.e. affected by refraction) and \(\Delta \zeta\) is what to add to give the “topocentric” (i.e. in vacuo) zenith distance.

GIVEN :
\begin{align*}
PHPA & \quad \text{d} \quad \text{pressure at the observer (hPa \equiv millibar)} \\
TC & \quad \text{d} \quad \text{ambient temperature at the observer (degrees Celsius)} \\
RH & \quad \text{d} \quad \text{relative humidity at the observer (1.0 means 100\%)} \\
WL & \quad \text{d} \quad \text{wavelength (micrometers)}
\end{align*}

RETURNED :
\begin{align*}
REFA & \quad \text{d} \quad \text{\(\tan \zeta\) coefficient (radians)} \\
REFB & \quad \text{d} \quad \text{\(\tan^3 \zeta\) coefficient (radians)}
\end{align*}

NOTES :
1. The model balances speed and accuracy to give good results in applications where performance at low altitudes is not paramount. Performance is maintained across a range of conditions, and applies to both optical/IR and radio.

2. The influences of the following are neglected:
 - height above sea level, apart from the reduced pressure itself;
 - latitude, i.e. the flattening of the Earth;
 - variations in tropospheric lapse rate and height of tropopause;
 - dispersive effects in the radio.

3. The model was tested using the following range of conditions:
 - lapse rates 0.0055, 0.0065, 0.0075 K per meter
 - latitudes 0°, 25°, 50°, 75°
 - heights 0, 2500, 5000 meters above sea level
 - pressures, mean for height −10% to +5% in steps of 5%
 - temperatures −10° to +20° with respect to 280K at sea level
 - relative humidity 0, 0.5, 1
 - wavelength 0.4, 0.6, ..., 2 \(\mu\)m, and radio
4. The accuracy with respect to raytracing through a model atmosphere was found to be as follows:

<table>
<thead>
<tr>
<th></th>
<th>worst</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>optical/IR</td>
<td>62</td>
<td>8</td>
</tr>
<tr>
<td>radio</td>
<td>319</td>
<td>49</td>
</tr>
</tbody>
</table>

For this particular set of conditions:

- lapse rate 6.5 K km$^{-1}$
- latitude 50°
- sea level
- pressure 1005 mb
- temperature 7°C
- humidity 80%
- wavelength 5740 Å

the results were as follows:

<table>
<thead>
<tr>
<th>ζ</th>
<th>raytrace</th>
<th>iau_REFCO</th>
<th>Saastamoinen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10.27</td>
<td>10.27</td>
<td>10.27</td>
</tr>
<tr>
<td>30</td>
<td>33.61</td>
<td>33.61</td>
<td>33.60</td>
</tr>
<tr>
<td>40</td>
<td>48.82</td>
<td>48.83</td>
<td>48.81</td>
</tr>
<tr>
<td>45</td>
<td>58.16</td>
<td>58.18</td>
<td>58.16</td>
</tr>
<tr>
<td>50</td>
<td>69.28</td>
<td>69.30</td>
<td>69.27</td>
</tr>
<tr>
<td>55</td>
<td>82.97</td>
<td>82.99</td>
<td>82.95</td>
</tr>
<tr>
<td>60</td>
<td>100.51</td>
<td>100.54</td>
<td>100.50</td>
</tr>
<tr>
<td>65</td>
<td>124.23</td>
<td>124.26</td>
<td>124.20</td>
</tr>
<tr>
<td>70</td>
<td>158.63</td>
<td>158.68</td>
<td>158.61</td>
</tr>
<tr>
<td>72</td>
<td>177.32</td>
<td>177.37</td>
<td>177.31</td>
</tr>
<tr>
<td>74</td>
<td>200.35</td>
<td>200.38</td>
<td>200.32</td>
</tr>
<tr>
<td>76</td>
<td>229.45</td>
<td>229.43</td>
<td>229.42</td>
</tr>
<tr>
<td>78</td>
<td>267.44</td>
<td>267.29</td>
<td>267.41</td>
</tr>
<tr>
<td>80</td>
<td>319.13</td>
<td>318.55</td>
<td>319.10</td>
</tr>
</tbody>
</table>

The values for Saastamoinen’s formula (which includes terms up to tan5) are taken from Hohenkerk & Sinclair (1985).

5. A WL value in the range 0–100 selects the optical/IR case and is wavelength in µm. Any value outside this range selects the radio case. Radio dispersion effects, important above 100 GHz, are neglected.

6. Outlandish input parameters are silently limited to mathematically safe values. Zero pressure is permissible, and causes zeroes to be returned.
• The formula for the saturation vapour pressure of water as a function of temperature and temperature is taken from Equations (A4.5-A4.7) of Gill (1982).

• The formula for the water vapour pressure, given the saturation pressure and the relative humidity is from Crane (1976), Equation (2.5.5).

• The refractivity of air is a function of temperature, total pressure, water-vapour pressure and, in the case of optical/IR, wavelength. The formulae for the two cases are developed from Hohenkerk & Sinclair (1985) and Rueger (2002).

• The formula for $\beta (= H_0/r_0)$ is an adaption of Equation (9) from Stone (1996). The adaptations, arrived at empirically, consist of (i) a small adjustment to the coefficient and (ii) a humidity term for the radio case only.

• The formulae for the refraction constants as a function of $n - 1$ and β are from Green (1987), Equation (4.31).

7. The sign conventions for the coefficients are such that A is positive and B (much smaller) is negative.
CALL:

CALL iau_TPORS (XI, ETA, A, B, A01, B01, A02, B02, N)

ACTION:

In the tangent plane projection, given the rectangular coordinates of a star and its spherical coordinates, determine the spherical coordinates of the tangent point.

GIVEN:

\[
\begin{align*}
XI, ETA & \quad \text{d} \quad \text{rectangular coordinates of star image (Note 2)} \\
A, B & \quad \text{d} \quad \text{star’s spherical coordinates (Note 3)}
\end{align*}
\]

RETURNED:

\[
\begin{align*}
A01, B01 & \quad \text{d} \quad \text{tangent point’s spherical coordinates, Solution 1} \\
A02, B02 & \quad \text{d} \quad \text{tangent point’s spherical coordinates, Solution 2} \\
N & \quad \text{i} \quad \text{number of solutions:} \\
\quad & 0 = \text{no solutions returned (Note 5)} \\
\quad & 1 = \text{only the first solution is useful (Note 6)} \\
\quad & 2 = \text{both solutions are useful (Note 6)}
\end{align*}
\]

NOTES:

1. The tangent plane projection is also called the *gnomonic* projection and the *central* projection.

2. The \(\eta \)-axis points due north in the adopted coordinate system. If the spherical coordinates are observed \([\alpha, \delta]\), the tangent plane coordinates \([\xi, \eta]\) are conventionally called the *standard coordinates*. If the spherical coordinates are with respect to a right-handed triad, \([\xi, \eta]\) are also right-handed. The units of \([\xi, \eta]\) are, effectively, radians at the tangent point.

3. All angular arguments are in radians.

4. The angles \(A01 \) and \(A02 \) are returned in the range \(0 - 2\pi \). The angles \(B01 \) and \(B02 \) are returned in the range \(\pm \pi \), but in the usual, non-pole-crossing, case, the range is \(\pm \pi/2 \).

5. Cases where there is no solution can arise only near the poles. For example, it is clearly impossible for a star at the pole itself to have a non-zero \(\xi \) value, and hence it is meaningless to ask where the tangent point would have to be to bring about this combination of \(\xi \) and \(\delta \).

6. Also near the poles, cases can arise where there are two useful solutions. The returned value \(N \) indicates whether the second of the two solutions returned is useful; \(N=1 \) indicates only one useful solution, the usual case.
7. The basis of the algorithm is to solve the spherical triangle PSC, where P is the north celestial pole, S is the star and C is the tangent point. The spherical coordinates of the star and tangent point are \([a, b]\) and \([a_0, b_0]\); writing \(\rho^2 = (\xi^2 + \eta^2)\) and \(r^2 = (1 + \rho^2)\), side c is then \((\pi/2 - b)\), side p is \((\xi^2 + \eta^2)^{1/2}\) and side s (to be found) is \((\pi/2 - b_0)\). Angle C is given by \(\sin C = \xi/\rho\) and \(\cos C = \eta/\rho\). Angle P (to be found) is the longitude difference between star and tangent point \((a - a_0)\).

8. This routine is a member of the following set:

<table>
<thead>
<tr>
<th>spherical</th>
<th>vector</th>
<th>solve for</th>
</tr>
</thead>
<tbody>
<tr>
<td>iau_TPXES</td>
<td>iau_TPXEV</td>
<td>image</td>
</tr>
<tr>
<td>iau_TPSTS</td>
<td>iau_TPSTV</td>
<td>star</td>
</tr>
<tr>
<td>iau_TPORS</td>
<td>iau_TPORV</td>
<td>origin</td>
</tr>
</tbody>
</table>
CALL:

CALL iau_TPORV (XI, ETA, V, V01, V02, N)

ACTION:

In the tangent plane projection, given the rectangular coordinates of a star and its direction cosines, determine the direction cosines of the tangent point.

GIVEN:

- \(XI, ETA \) \text{ d} \quad \text{rectangular coordinates of star image (Note 2)}
- \(V \) \text{ d(3)} \quad \text{star’s direction cosines (Note 3)}

RETURNED:

- \(V01 \) \text{ d(3)} \quad \text{tangent point’s direction cosines, Solution 1}
- \(V02 \) \text{ d(3)} \quad \text{tangent point’s direction cosines, Solution 2}
- \(N \) \text{ i} \quad \text{number of solutions:}
 - 0 = no solutions returned (Note 4)
 - 1 = only the first solution is useful (Note 5)
 - 2 = both solutions are useful (Note 5)

NOTES:

1. The tangent plane projection is also called the \textit{gnomonic} projection and the \textit{central} projection.

2. The \(\eta \)-axis points due north in the adopted coordinate system. If the direction cosines represent observed \([\alpha, \delta]\), the tangent plane coordinates \([\xi, \eta]\) are conventionally called the \textit{standard coordinates}. If the direction cosines are with respect to a right-handed triad, \([\xi, \eta]\) are also right-handed. The units of \([\xi, \eta]\) are, effectively, radians at the tangent point.

3. The vector \(V \) must be of unit length or the result will be wrong.

4. Cases where there is no solution can arise only near the poles. For example, it is clearly impossible for a star at the pole itself to have a non-zero \(\xi \) value, and hence it is meaningless to ask where the tangent point would have to be.

5. Also near the poles, cases can arise where there are two useful solutions. The returned value \(N \) indicates whether the second of the two solutions returned is useful; \(N \neq 1 \) indicates only one useful solution, the usual case.

6. The basis of the algorithm is to solve the spherical triangle PSC, where P is the north celestial pole, S is the star and C is the tangent point. The spherical coordinates of the star and tangent point are \([a, b]\) and \([a_0, b_0]\); writing \(\rho^2 = (\xi^2 + \eta^2) \) and \(r^2 = (1 + \rho^2) \), side c is then \((\pi/2 - b)\), side p is \((\xi^2 + \eta^2)^{1/2}\) and side s (to be found) is \((\pi/2 - b_0)\). Angle \(C \) is given by \(\sin C = \xi/\rho \) and \(\cos C = \eta/\rho \). Angle \(P \) (to be found) is the longitude difference between star and tangent point \((a - a_0)\).
7. This routine is a member of the following set:

<table>
<thead>
<tr>
<th>spherical</th>
<th>vector</th>
<th>solve for</th>
</tr>
</thead>
<tbody>
<tr>
<td>iau_TPXES</td>
<td>iau_TPXEV</td>
<td>image</td>
</tr>
<tr>
<td>iau_TPSTS</td>
<td>iau_TPSTV</td>
<td>star</td>
</tr>
<tr>
<td>iau_TPORS</td>
<td>iau_TPORV</td>
<td>origin</td>
</tr>
</tbody>
</table>
CALL:
{\texttt{CALL iauTPSTS\ (XI, ETA, A0, B0, A, B)}}

ACTION:
In the tangent plane projection, given the star’s rectangular coordinates and the spherical coordinates of the tangent point, solve for the spherical coordinates of the star.

GIVEN:
\begin{align*}
X I, E T A & \quad \text{d} \quad \text{rectangular coordinates of star image (Note 2)} \\
A 0, B 0 & \quad \text{d} \quad \text{tangent point’s spherical coordinates}
\end{align*}

RETURNED:
\begin{align*}
A, B & \quad \text{d} \quad \text{star’s spherical coordinates}
\end{align*}

NOTES:
\begin{enumerate}
\item The tangent plane projection is also called the \textit{gnomonic} projection and the \textit{central} projection.
\item The η-axis points due north in the adopted coordinate system. If the spherical coordinates are observed $[\alpha, \delta]$, the tangent plane coordinates $[\xi, \eta]$ are conventionally called the \textit{standard coordinates}. If the spherical coordinates are with respect to a right-handed triad, $[\xi, \eta]$ are also right-handed. The units of $[\xi, \eta]$ are, effectively, radians at the tangent point.
\item All angular arguments are in radians.
\item This routine is a member of the following set:
\begin{tabular}{|c|c|c|}
\hline
\textit{spherical} & \textit{vector} & \textit{solve for} \\
\hline
\texttt{iauTPXES} & \texttt{iauTPXEV} & \textit{image} \\
\texttt{iauTPSTS} & \texttt{iauTPSTV} & \textit{star} \\
\texttt{iauTPORS} & \texttt{iauTPORV} & \textit{origin} \\
\hline
\end{tabular}
\end{enumerate}
iau_TPSTV

gnomonic projection: solve for star (vector)

CALL:

CALL iau_TPSTV (XI, ETA, V0, V)

ACTION:

In the tangent plane projection, given the star’s rectangular coordinates and the direction cosines of the tangent point, solve for the direction cosines of the star.

GIVEN:

- **XI, ETA**
 rectangular coordinates of star image (Note 2)
- **V0**
 tangent point’s direction cosines (Note 4)

RETURNED:

- **V**
 star’s direction cosines

NOTES:

1. The tangent plane projection is also called the *gnomonic* projection and the *central* projection.

2. The \(\eta \)-axis points due north in the adopted coordinate system. If the direction cosines represent observed \([\alpha, \delta]\), the tangent plane coordinates \([\xi, \eta]\) are conventionally called the *standard coordinates*. If the direction cosines are with respect to a right-handed triad, \([\xi, \eta]\) are also right-handed. The units of \([\xi, \eta]\) are, effectively, radians at the tangent point.

3. The method used is to complete the star vector in the \([\xi, \eta]\) based triad and normalize it, then rotate the triad to put the tangent point at the pole with the \(x \)-axis aligned to zero longitude. Writing \([a_0, b_0]\) for the celestial spherical coordinates of the tangent point, the sequence of rotations is \((b_0 - \pi/2)\) around the \(x \)-axis followed by \((-a_0 - \pi/2)\) around the \(z \)-axis.

4. If vector \(V0 \) is not of unit length, the returned vector \(V \) will be wrong.

5. If vector \(V0 \) points at a pole, the returned vector \(V \) will be based on the arbitrary assumption that the longitude coordinate of the tangent point is zero.

6. This routine is a member of the following set:

<table>
<thead>
<tr>
<th>spherical</th>
<th>vector</th>
<th>solve for</th>
</tr>
</thead>
<tbody>
<tr>
<td>iau_TPXES</td>
<td>iau_TPXEV</td>
<td>image</td>
</tr>
<tr>
<td>iau_TPSTS</td>
<td>iau_TPSTV</td>
<td>star</td>
</tr>
<tr>
<td>iau_TPORS</td>
<td>iau_TPORV</td>
<td>origin</td>
</tr>
</tbody>
</table>
iau_TPXES
gnomonic projection: solve for image (spherical)

CALL:

```
CALL iau_TPXES ( A, B, A0, B0, XI, ETA, J )
```

ACTION:

In the tangent plane projection, given celestial spherical coordinates for a star and the tangent point, solve for the star’s rectangular coordinates in the tangent plane.

GIVEN:

- \(A, B \) — star’s spherical coordinates
- \(A0, B0 \) — tangent point’s spherical coordinates

RETURNED:

- \(XI, ETA \) — rectangular coordinates of star image (Note 2)
- \(J \) — status: 0 = OK, 1 = star too far from axis, 2 = antistar on tangent plane, 3 = antistar too far from axis

NOTES:

1. The tangent plane projection is also called the *gnomonic* projection and the *central* projection.

2. The \(\eta \)-axis points due north in the adopted coordinate system. If the spherical coordinates are observed \([\alpha, \delta] \), the tangent plane coordinates \([\xi, \eta] \) are conventionally called the *standard coordinates*. If the spherical coordinates are with respect to a right-handed triad, \([\xi, \eta] \) are also right-handed. The units of \([\xi, \eta] \) are, effectively, radians at the tangent point.

3. All angular arguments are in radians.

4. This routine is a member of the following set:

<table>
<thead>
<tr>
<th>spherical</th>
<th>vector</th>
<th>solve for</th>
</tr>
</thead>
<tbody>
<tr>
<td>iau_TPXES</td>
<td>iau_TPXEV</td>
<td>image</td>
</tr>
<tr>
<td>iau_TPSTS</td>
<td>iau_TPSTV</td>
<td>star</td>
</tr>
<tr>
<td>iau_TPORS</td>
<td>iau_TPORV</td>
<td>origin</td>
</tr>
</tbody>
</table>
IAU

TPXEV

Gnomonic projection: solve for image (vector)

CALL:

CALL iau_TPXEV (V, V0, XI, ETA, J)

ACTION:

In the tangent plane projection, given celestial direction cosines for a star and the tangent point, solve for the star’s rectangular coordinates in the tangent plane.

GIVEN:

\[
\begin{align*}
V & \text{ d(3) direction cosines of star (Note 4)} \\
V0 & \text{ d(3) direction cosines of tangent point (Note 4)}
\end{align*}
\]

RETURNED:

\[
\begin{align*}
XI, ETA & \text{ d tangent plane coordinates of star} \\
J & \text{ i status: 0 = OK} \\
& 1 = \text{ star too far from axis} \\
& 2 = \text{ antistar on tangent plane} \\
& 3 = \text{ antistar too far from axis}
\end{align*}
\]

NOTES:

1. The tangent plane projection is also called the *gnomonic* projection and the *central* projection.

2. The η-axis points due north in the adopted coordinate system. If the direction cosines represent observed \([\alpha,\delta]\), the tangent plane coordinates \([\xi,\eta]\) are conventionally called the *standard coordinates*. If the direction cosines are with respect to a right-handed triad, \([\xi,\eta]\) are also right-handed. The units of \([\xi,\eta]\) are, effectively, radians at the tangent point.

3. The method used is to extend the star vector to the tangent plane and then rotate the triad so that \([x, y]\) becomes \([\xi, \eta]\). Writing \([a, b]\) for the celestial spherical coordinates of the star, the sequence of rotations is \((a + \pi/2)\) around the z-axis followed by \((\pi/2 - b)\) around the x-axis.

4. If vector \(V0\) is not of unit length, or if vector \(V\) is of zero length, the results will be wrong.

5. If \(V0\) points at a pole, the returned \([\xi, \eta]\) will be based on the arbitrary assumption that the longitude coordinate of the tangent point is zero.

6. This routine is a member of the following set:

<table>
<thead>
<tr>
<th>spherical</th>
<th>vector</th>
<th>solve for</th>
</tr>
</thead>
<tbody>
<tr>
<td>iau_TPXES</td>
<td>iau_TPXEV</td>
<td>image</td>
</tr>
<tr>
<td>iau_TPSTS</td>
<td>iau_TPSTV</td>
<td>star</td>
</tr>
<tr>
<td>iau_TPORS</td>
<td>iau_TPORV</td>
<td>origin</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCRS</td>
<td>Barycentric Celestial Reference System</td>
</tr>
<tr>
<td>CIO</td>
<td>Celestial Intermediate Origin</td>
</tr>
<tr>
<td>CIP</td>
<td>Celestial Intermediate Pole</td>
</tr>
<tr>
<td>CIRS</td>
<td>Celestial Intermediate Reference System</td>
</tr>
<tr>
<td>EO</td>
<td>equation of the origins</td>
</tr>
<tr>
<td>FK5</td>
<td>fifth fundamental catalog</td>
</tr>
<tr>
<td>GCRS</td>
<td>Geocentric Celestial Reference System</td>
</tr>
<tr>
<td>GR</td>
<td>general relativity</td>
</tr>
<tr>
<td>GST</td>
<td>Greenwich (apparent) sidereal time</td>
</tr>
<tr>
<td>IAU</td>
<td>International Astronomical Union</td>
</tr>
<tr>
<td>ICRS</td>
<td>International Celestial Reference System</td>
</tr>
<tr>
<td>IERS</td>
<td>International Earth Rotation and reference systems Service</td>
</tr>
<tr>
<td>ITRS</td>
<td>International Terrestrial Reference System</td>
</tr>
<tr>
<td>JD</td>
<td>Julian date</td>
</tr>
<tr>
<td>J2000.0</td>
<td>2000 January 1.5 (in some specified time scale)</td>
</tr>
<tr>
<td>MJD</td>
<td>Modified Julian date</td>
</tr>
<tr>
<td>SR</td>
<td>special relativity</td>
</tr>
<tr>
<td>SOFA</td>
<td>Standards of Fundamental Astronomy</td>
</tr>
<tr>
<td>TIO</td>
<td>Terrestrial Intermediate Origin</td>
</tr>
<tr>
<td>TIRS</td>
<td>Terrestrial Intermediate Reference System</td>
</tr>
<tr>
<td>TAI</td>
<td>International Atomic Time</td>
</tr>
<tr>
<td>TDB</td>
<td>Barycentric Dynamical Time</td>
</tr>
<tr>
<td>TT</td>
<td>Terrestrial Time</td>
</tr>
<tr>
<td>UT1</td>
<td>Universal Time</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
</tbody>
</table>
10 References

Appendix: a relativistic version of the iau_PMPX routine

The standard SOFA proper motion and parallax routine uses a robust non-relativistic formulation that meets all practical accuracy requirements. Here is an unreleased counterpart that is compliant with special relativity but relies upon the proper motion and parallax data being physically possible:

```
SUBROUTINE iau_PMPX ( RC, DC, PR, PD, PX, RV, PMT, POB, PCO )
*** - - - - - - - - - -
* i a u _ P M P X
* - - - - - - - - - -
*
* Proper motion and parallax.
*
* Status: unreleased SOFA support routine.
*
* Given:
* RC,DC d ICRS RA,Dec at catalog epoch (radians)
* PR d RA proper motion (radians/year; Note 1)
* PD d Dec proper motion (radians/year)
* PX d parallax (arcsec)
* RV d radial velocity (km/s, +ve if receding)
* PMT d proper motion time interval (SSB, Julian years)
* POB d(3) SSB to observer vector (au)
*
* Returned:
* PCO d(3) coordinate direction (BCRS unit vector)
*
* Notes:
* *
* 1) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt.
* *
* 2) The proper motion time interval is for when the starlight
* reaches the solar system barycenter.
* *
* 3) To avoid the need for iteration, the Roemer effect (i.e. the
* small annual modulation of the proper motion coming from the
* changing light time) is applied approximately, using the
* direction of the star at the catalog epoch.
* *
* Called:
* iau_PDP scalar product of two p-vectors
* iau_PMSAFE proper motion with small-parallax handling
* iau_S2C spherical coordinates to unit vector
* iau_PN decompose p-vector into modulus and direction
*```
* Usual SOFA copyright terms apply.
 *
*-----------------------------------------------------------------------

IMPLICIT NONE
DOUBLE PRECISION RC, DC, PR, PD, PX, RV, PMT, POB(3), PCD(3)

* JD for use as arbitrary starting point
DOUBLE PRECISION DJM0
PARAMETER ( DJM0 = 2400000.5D0 )

* Days per Julian year
DOUBLE PRECISION DJY
PARAMETER ( DJY = 365.25D0 )

* Days to seconds
DOUBLE PRECISION D2S
PARAMETER ( D2S = 86400D0 )

* Speed of light (m/s)
DOUBLE PRECISION CMPS
PARAMETER ( CMPS = 299792458D0 )

* Astronomical unit (m, IAU 2012)
DOUBLE PRECISION AUM
PARAMETER ( AUM = 149597870.7D3 )

* Light time for 1 au, days
DOUBLE PRECISION AULTD
PARAMETER ( AULTD = AUM/CMPS/D2S )

* Arcseconds to radians
DOUBLE PRECISION DAS2R
PARAMETER ( DAS2R = 4.848136811095359935899141D-6 )

INTEGER J, I
DOUBLE PRECISION P(3), PDB, DT, RC2, DC2, PR2, PD2, PX2,
: RV2, W

* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* Barycentric direction of star at catalog epoch.
CALL iau_S2C ( RC, DC, P )

* Component of observer vector in star direction.
CALL iau_PDP ( P, POB, PDB )

* Proper motion time interval (d), including Roemer effect.
DT = PMT*DJY + PDB*AULTD

* Space motion.
  CALL iau_PMSAFE ( RC, DC, PR, PD, PX, RV, DJM0, ODO, DJM0, DT,
                   :   RC2, DC2, PR2, PD2, PX2, RV2, J )

* Barycentric direction of star at date.
  CALL iau_S2C ( RC2, DC2, P )

* Parallax.
  \[ W = PX2 \times DAS2R \]
  DO 1 I=1,3
    P(I) = P(I) - W*POB(I)
  1 CONTINUE
  CALL iau_PN ( P, W, PCO )

END