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1 Preliminaries

1.1 Introduction

SOFA stands for Standards Of Fundamental Astronomy. The SOFA software is a collection of
Fortran 77 and ANSI C subprograms that implement official IAU algorithms for fundamental-
astronomy computations. At the present time the SOFA software comprises 192 astronomy
routines supported by 55 utility routines that deal with angles, vectors and matrices and called
the SOFA vector-matrix library (VML). The core documentation for the SOFA collection consists
of classified and alphabetic lists of subroutine calls plus detailed preamble comments in the source
code of individual routines.

The present document concerns the VML angle/vector/matrix tools, that were either imple-
mented in the course of writing the astronomical routines or that were thought likely to be
useful in writing astronomical applications. Although in the wider context they are far from
exhaustive (there is for example no treatment of quaternions) they are at least a good starting
point. And as most are very short and simple, they could act as models for implementing similar
facilities in other programming languages.

Using the VML routines requires knowledge of vector/matrix methods, simple spherical trigonom-
etry, and methods of attitude representation. These topics are covered in many textbooks1, and
the present document does not pretend to be an ab initio tutorial. Its main objective is simply
to set out the SOFA routines in context and allow their names and calls to be quickly discovered.
Experienced users will seldom need to refer to anything more than the quick reference material
at the end, namely Sections 3.4 and 3.5. More complete information about a given routine can
be found in Section 3.3, which is arranged alphabetically.

1.2 General principles

The SOFA VML consists mostly of routines which operate on ordinary Cartesian vectors (x, y, z)
and 3 × 3 rotation matrices, plus a few related to spherical angles. There is also support for
vectors that represent velocity as well as position and vectors that represent rotation instead of
position. Thus the array-based entities that SOFA uses are the following:

• “Position vectors” or “p-vectors” (which are just ordinary 3-vectors) are
DOUBLE PRECISION (3).

• “Position/velocity vectors” or “pv-vectors” are DOUBLE PRECISION (3,2). In terms of
memory address, the velocity components of a pv-vector follow the position components.
Application code is permitted to exploit this and all other knowledge of the internal layouts:
that x, y and z appear in that order and are in a right-handed Cartesian coordinate system
etc. For example, the iau_CP routine (copy a p-vector) can be used to copy the velocity
component of a pv-vector (indeed, this is how the iau_CPV routine is coded).

1For instance Spacecraft Attitude Determination and Control, James R.Wertz (ed.), Astrophysics and Space
Science Library, Vol. 73, D.Reidel Publishing Company, 1986.
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• “Rotation matrices” or “r-matrices” are DOUBLE PRECISION (3,3). When used for rota-
tion, they are orthogonal; each row or column is a unit vector, and the inverse is equal to
the transpose. Most of the matrix routines do not assume that r-matrices are necessarily
orthogonal and in fact work on any 3× 3 matrix.

• “Rotation vectors” or “r-vectors” (or Euler vectors) are DOUBLE PRECISION (3). Such
vectors are a combination of the Euler axis and angle and are convertible to and from r-
matrices. The direction is the axis of rotation and the magnitude is the angle of rotation, in
radians. Because the amount of rotation can be scaled up and down simply by multiplying
the vector by a scalar, r-vectors are useful for representing spins about an axis which is
fixed.

The set of routines provided do not completely fill the range of operations that link all the
various vector and matrix options, but are with some exceptions limited to routines that are
required by SOFA’s astronomical software.
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2 Guide to the VML routines

This section outlines a number of positional-astronomy topics, for background and to provide a
context in which the various routines can be introduced.

2.1 Spherical trigonometry

Celestial phenomena occur at such vast distances from the observer that for most practical
purposes there is no need to work in 3D; only the direction of a source matters, not how far
away it is. Things can therefore be viewed as if they were happening on the inside of sphere with
the observer at the centre – the celestial sphere. Problems involving positions and orientations
in the sky can then be solved by using the formulas of spherical trigonometry, which apply to
spherical triangles, the sides of which are great circles.

Positions on the celestial sphere may be specified by using a spherical polar coordinate system,
defined in terms of some fundamental plane and a direction in that plane chosen to represent
zero longitude. Mathematicians usually work with the co-latitude, with zero at the principal
pole, whereas most astronomical coordinate systems use latitude, reckoned plus and minus from
the equator. Astronomical coordinate systems may be either right-handed (e.g. right ascension
and declination [α, δ ], galactic longitude and latitude [ lII , bII ]) or left-handed (e.g. hour angle
and declination [h, δ ]). In some cases different conventions have been used in the past, a
fruitful source of mistakes. Azimuth and geographical longitude are examples; azimuth is now
generally reckoned north through east (making a left-handed system); geographical longitude is
now usually taken to increase eastwards (a right-handed system) but astronomers at one time
employed a west-positive convention. In reports and program comments it is wise to spell out
what convention is being used, if there is any possibility of confusion.

When applying spherical trigonometry formulas, attention must be paid to rounding errors (for
example it is a bad idea to find a small angle through its cosine, as we shall see later) and to
the possibility of problems close to poles. Formulas that involve tangents and cotangents need
to be treated with particular care. Also, if a formulation relies on inspection to establish the
quadrant of the result, it is a sure sign that a vector-related method will be preferable.

Although SOFA includes many functions that work in terms of specific spherical coordinates such
as [α, δ ], only two routines that operate directly on generic spherical coordinates are provided:
iau_SEPS computes the angular separation between two points (i.e. the distance along a great
circle) and iau_PAS computes the bearing or position angle of one point seen from the other. As
a simple demonstration, we will use these two routines (and a spherical-Earth approximation)
to estimate the distance from London to Sydney and the initial compass heading:

IMPLICIT NONE

DOUBLE PRECISION R2D, RKM

PARAMETER ( R2D = 57.2957795D0, RKM = 6375D0 )

DOUBLE PRECISION AL, BL, AS, BS, S, B

* Longitudes and latitudes (radians) for London and Sydney.
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AL = -0.2D0 / R2D

BL = 51.5D0 / R2D

AS = 151.2D0 / R2D

BS = -33.9 / R2D

* Great-circle distance and initial heading.

CALL iau_SEPS ( AL,BL, AS,BS, S )

CALL iau_PAS ( AL,BL, AS,BS , B )

WRITE ( *, '(F7.1,'' km,'',F6.1,'' deg'')' ) S*RKM, B*R2D

END

The result is range 17011 km, bearing 61◦ (towards Moscow).

The routines iau_SEPP (p62) and iau_PAP (p32) are equivalents of iau_SEPS (p63) and iau_PAS

(p33) but starting from p-vectors instead of spherical coordinates.

In view of what will be said later about the superiority of vector techniques, it should be noted
that the use of spherical trigonometry formulas in the SOFA collection is essentially nil.

2.1.1 Formatting angles

SOFA has routines for converting angles to and from sexagesimal form (hours, minutes, seconds
or degrees, arcminutes, arcseconds). These apparently straightforward operations contain hidden
traps which the SOFA functions avoid.

In that connection, an aspect that application developers need to address is how to go about
decoding numbers from a character string, such as might be entered using a keyboard. SOFA
at present offers no help with this, leaving the user to rely either on locally-developed libraries
or Fortran’s low-level formatted READ facilities. A particular difficulty arises with sexagesimal
formats, where it is tempting simply to decode three numbers and apply the sign of the first
to the final answer. This is the notorious “minus zero” bug, where the string ′-0 ′ is received
as (plus) zero and the minus sign lost; consequently declinations etc. in the range 0◦ to −1◦

mysteriously migrate to the range 0◦ to +1◦.2 The only solution is to eschew the number
decoding facilities of the programming language and resort instead to low-level character based
techniques.

SOFA provides two routines for expressing an angle in radians in a preferred range:

• normalize radians to range 0 to 2π, iau_ANPM (p23)

• normalize radians to range −π to +π, iau_ANP (p22)

The first is suitable for hour angles and the second right ascension, for example. Six routines. . .

2For instance source ICRF J001611.0-001512 in Table 5 of Fey, A.L. et al., The Second Realization of the

International Reference Frame by Very Long Baseline Interferometry, Astronomical Journal, 150:58, 2015.
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• decompose radians into degrees, arcminutes, arcseconds, iau_A2AF, p19

• decompose radians into hours, minutes, seconds, iau_A2TF, p20

• decompose days into hours, minutes, seconds, iau_D2TF, p28

• degrees, arcminutes, arcseconds to radians, iau_AF2A, p21

• hours, minutes, seconds to radians, iau_TF2A, p66

• hours, minutes, seconds to days, iau_TF2D, p67

. . . are provided to convert angles to and from sexagesimal form. They avoid the common
“inconsistent rounding” bug, which produces angles like 24h 59m 59s.999; they also avoid the
“minus zero” bug mentioned earlier. Here is code which displays an hour angle in radians,
awkwardly placed on the boundary between 0 and −1 hours, using two different resolutions:

IMPLICIT NONE

DOUBLE PRECISION HA

CHARACTER SIGN

INTEGER IHMSF(4)

HA = -0.261799315D0

CALL iau_A2TF ( 3, HA, SIGN, IHMSF )

WRITE ( *, '( A, I2.2, 2I3.2, ''.'', I3.3 )' ) SIGN, IHMSF

CALL iau_A2TF ( 2, HA, SIGN, IHMSF )

WRITE ( *, '( A, I2.2, 2I3.2, ''.'', I2.2 )' ) SIGN, IHMSF

END

The output is:

-00 59 59.999

-01 00 00.00

Note, however, that cases where rounding has moved the angle beyond the desired range will
need to be detected explicitly, by testing whether the first field has reached 24, 360, 180 etc. and
reacting appropriately.

2.2 P-vectors and R-matrices

Readers will already be aware that the SOFA philosophy is to avoid spherical trigonometry
and instead favor vector methods. Many find this offputting. Given a positional-astronomy
problem to solve, they expect there to be a simple formula involving a few sines and cosines
that they can punch into a calculator to produce the required answers. The equivalent vector
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expressions seem terse and unfriendly, and do not lend themselves to calculator evaluation.
Vector-based positional-astronomy texts are peppered with intimidating symbols set in heavy
type, and diagrams are few—an array of matrix elements, for example, lacks the intuitive appeal
of a picture showing the physical meaning of the various angles. However, in practice it turns out
that the vector methods are more powerful and better behaved than using spherical trigonometry,
and the terseness of expression is a compelling advantage as problems become more complex.

The starting point is to recognize that a spherical polar coordinate system is only one way
to describe the direction of an astronomical target. A convenient alternative is the sum of
three vectors at right angles, forming a system of Cartesian coordinates. The x- and y-axes lie
in the fundamental plane (e.g. the equator in the case of [α, δ ]), with the x-axis pointing to
zero longitude. The z-axis is normal to the fundamental plane and points towards the positive
(north) pole. The y-axis can lie in either of the two possible directions, depending on whether
the coordinate system is right-handed or left-handed. The three axes are sometimes called a
triad. For most applications involving arbitrarily distant objects such as stars, the vector which
defines the direction concerned is constrained to have unit length, no different to omitting the
distance for spherical coordinates. The x-, y- and z- components can be regarded as the scalar
(dot) product of this vector onto the three axes of the triad in turn. Because the vector is a
unit vector, each of the three dot-products is simply the cosine of the angle between the unit
vector and the axis concerned, and the three components are sometimes called direction cosines

for this reason.

For some applications, including those involving objects within the Solar System, unit vectors
are inappropriate, and it is necessary to use vectors scaled in length-units such as au, km etc.

In these cases the origin of the coordinate system might not be the observer, but instead be the
Sun, the Solar-System barycenter, the center of the Earth etc. But whatever the application,
the final direction in which the observer sees the object can always be expressed as a unit vector.

But what has all this achieved? Instead of two numbers—a longitude and a latitude—we now
have three numbers to look after, namely the x-, y- and z- components, whose quadratic sum
we have somehow to constrain to be unity. And, in addition to this apparent redundancy, most
people find it harder to visualize problems in terms of [x, y, z ] than in [ θ, φ ], as mentioned
above. Despite these objections, the vector approach turns out to have significant advantages
over the spherical trigonometry approach:

• Vector formulas tend to be much more succinct; one vector operation hides strings of sines
and cosines.

• The formulas are as a rule rigorous, even at the poles.

• Precision is maintained all over the celestial sphere. When one Cartesian component is
nearly unity and therefore insensitive to direction, the others automatically become small
and therefore relatively more precise: the precision is shared out.

• Formulations usually deliver the quadrant of the result without the need for inspection,
an aspect delegated to the library routine ATAN2).

A number of important transformations in positional astronomy turn out to be nothing more
than changes of coordinate system, something which is especially convenient if the vector ap-
proach is used. A direction with respect to one triad can be expressed relative to another triad
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simply by multiplying the [x, y, z ] column vector by the appropriate 3× 3 orthogonal matrix (a
tensor of Rank 2, or dyadic). The three rows of this rotation matrix are the vectors in the old
coordinate system of the three new axes, and the transformation amounts to obtaining the dot-
product of the direction-vector with each of the three new axes. Conversely, the three columns
of the matrix are the vectors in the new coordinate system of the three original axes. Precession,
nutation, [h, δ ] to [Az,El ], [α, δ ] to [ lII , bII ] and so on are typical examples of the technique.
An especially convenient property of the rotation matrices is that they can be inverted simply
by taking the transpose.

The elements of these “p-vectors” and “r-matrices” are assorted combinations of the sines and
cosines of the various angles involved (right ascension, declination and so on, depending on
which transformation is being applied). If you write out the matrix multiplications in full you
get expressions which are essentially the same as the equivalent spherical trigonometry formulas.
Indeed, many of the standard formulas of spherical trigonometry are most easily derived by
expressing the problem initially in terms of vectors.

2.2.1 SOFA routines for vectors and matrices

Transformations between spherical and vector form, with support for both unit vectors (direction
cosines) and ones of specified length, are provided for by these routines:

• spherical to unit vector, iau_S2C, p58

• unit vector to spherical, iau_C2S, p24

• spherical to p-vector, iau_S2P, p59

• p-vector to spherical, iau_P2S, p31

An assortment of standard 3-vector operations (dot and cross products, add and subtract etc.)
are carried out by these routines:

• zero p-vector, iau_ZP, p71

• p-vector plus p-vector, iau_PPP, p38

• p-vector minus p-vector, iau_PMP, p35

• p-vector plus scaled p-vector, iau_PPSP, p39

• inner (=scalar=dot) product of two p-vectors, iau_PDP, p34

• outer (=vector=cross) product of two p-vectors, iau_PXP, p49

• modulus of p-vector, iau_PM, p35

• normalize p-vector returning modulus, iau_PN, p37

• multiply p-vector by scalar, iau_SXP, p64
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These routines make copies of 3-vectors and 3× 3 matrices:

• copy p-vector, iau_CP, p25

• copy r-matrix, iau_CR, p27

There are routines for 3× 3 matrix product and transpose:

• r-matrix multiply, iau_RXR, p55

• transpose r-matrix, iau_TR, p68

. . . and two for matrix-vector products:

• product of r-matrix and p-vector, iau_RXP , p53

• product of transpose of r-matrix and p-vector, iau_TRXP, p69

Initializing an r-matrix to null (all elements zero) or the identity matrix (diagonal elements
unity, otherwise zero) can be accomplished by calling either

• initialize r-matrix to null, iau_ZR, p73

• initialize r-matrix to identity, iau_IR, p29

respectively. The latter is the first step when creating an r-matrix from Euler angles (successive
rotations about specified Cartesian axes—see Section. 3.2 for all the three-angle cases). Each
rotation can be applied by one of the routines. . .

• rotate r-matrix about x, iau_RX, p52

• rotate r-matrix about y, iau_RY, p56

• rotate r-matrix about z, iau_RZ, p57

In some cases (the construction of a bias-precession-nutation matrix is a good example) more
than three calls will be needed. Note that the order is all-important; it is a common blunder to
code an expression like Rx(ψ)Ry(θ)Rz(φ) by starting with Rx(ψ) and ending with Rz(φ) when
it is the reverse.

As a simple example of using a vector approach, the following code demonstrates how far an
International Celestial Reference Frame source has moved between successive issues, namely
ICRF2 and ICRF3:
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IMPLICIT NONE

INTEGER J

DOUBLE PRECISION RA, DA, RB, DB, THETA, A(3), B(3), AXB(3), S, C

* RA,Dec of source ICRF J044238.6-001743 in the ICRF2 catalog.

CALL iau_TF2A ( '+', 04, 42, 38.66073910D0, RA, J )

CALL iau_AF2A ( '-', 00, 17, 43.4203921D0, DA, J )

* RA,Dec of the same source in the ICRF3 (S/X) catalog.

CALL iau_TF2A ( '+', 04, 42, 38.66072366D0, RB, J )

CALL iau_AF2A ( '-', 00, 17, 43.4209582D0, DB, J )

* Method 1: spherical trigonometry (cosine rule).

THETA = ACOS ( SIN(DA)*SIN(DB) + COS(DA)*COS(DB)*COS(RB-RA) )

WRITE ( *, '(''The two positions are'',' //

: 'F10.6, '' arcsec apart.'')' )

: THETA*206264.80624709635515647335733D0

* Method 2: vectors (sine and cosine from cross and dot products).

CALL iau_S2C ( RA, DA, A )

CALL iau_S2C ( RB, DB, B )

CALL iau_PXP ( A, B, AXB )

CALL iau_PM ( AXB, S )

CALL iau_PDP ( A, B, C )

THETA = ATAN2 ( S, C )

WRITE ( *, '(''The two positions are'',' //

: 'F10.6, '' arcsec apart.'')' )

: THETA*206264.80624709635515647335733D0

END

The output is:

The two positions are 0.000000 arcsec apart.

The two positions are 0.000612 arcsec apart.

The failure of the first method to deliver a useful answer is simply because cos θ of a small angle
is close to unity. The vector-based code ensures accurate performance at all ranges of angle by
computing both sine and cosine. This is the method used by the routines iau_SEPS (p63) and
iau_SEPP (p62), and of course the six statements of Method 2 could be replaced by a single call
to iau_SEPS without affecting the result.
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2.3 R-vectors

Rotation matrices are just one way of describing attitude, and have both advantages and disad-
vantages. The fact that they comprise nine numbers means there is clearly some redundancy,
and this is manifested as the requirement for each row and column to be a unit vector, a condi-
tion that will be compromised as rounding errors accumulate (and messy to renormalize). On
the other hand, once the nine numbers are available they can be used with complete efficiency
to reorient multiple vectors, something often needed in astronomical applications, for example
to apply precession to a list of star positions.

But other methods exist, each with their own set of pros and cons. Any rotation can be expressed
as Euler axis and angle, the former being the pole of rotation as a unit vector and the latter
the amount of rotation, a scalar; this representation is thus a total of four numbers. These
elements can be combined, two examples being Gibbs vectors and Euler symmetric parameters

or quaternions, neither of which SOFA uses. Gibbs vectors consist of only three numbers,
namely the Euler axis vector but scaled by the tangent of half the angle. A unit quaternion is
four numbers, one of which is the cosine of half the angle and the other three the Euler axis
scaled by the sine of half the angle.

Despite the fact that SOFA does not use them, quaternions are important and it is worth listing
some of their advantages:

• Quaternions are more compact (four numbers) than the r-matrix representation (nine
numbers), and as rounding errors build up renormalization is straightforward and efficient.

• The quaternion elements vary continuously over the unit sphere as the orientation changes,
avoiding discontinuous jumps and singularities.

• Translating a unit quaternion into the equivalent rotation matrix involves no trigonometric
functions.

• It is simple to combine two individual rotations represented as quaternions using a quater-
nion product, and this requires about half the arithmetic operations that combining two
rotation matrices does. (On the other hand rotating a vector takes about twice the arith-
metic operations than if a rotation matrix is used.)

The quaternion approach comes into its own for applications where computational efficiency is
paramount, many different rotations are in play at once, and smooth interpolation is required,
for example in computer games. It has less to offer to SOFA, which instead supplements its use
of r-matrices with a “rotation vector” scheme, which simply scales the Euler axis unit vector by
the angle in radians. The two techniques (quaternions and r-vectors) have much in common, and
while the r-vector approach sacrifices some computational efficiency compared with quaternions
it has its own set of advantages:

• Intuitive appeal—very easy to understand.

• An r-vector is completely non-redundant, comprising just three numbers.

• The numbers are independent, and the question of normalization does not arise.
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• Smooth interpolation at constant angular speed is trivial.

• Multiple rotations (i.e. where the angle is more than 2π) can be expressed.

To demonstrate the first point, consider the so-called “frame bias” between the International
Celestial Reference System and the J2000.0 mean equator and equinox triad. If we would like to
know (i) where on the celestial sphere the frame bias is zero and (ii) the maximum effect frame
bias can have on a star position, this is easy using r-vectors:3

IMPLICIT NONE

DOUBLE PRECISION DAS2R

PARAMETER ( DAS2R = 4.848136811095359935899141D-6 )

CHARACTER SIGN

INTEGER IHMSF(4), IDMSF(4), I

DOUBLE PRECISION RB(3,3), VB(3), ANGLE, RA, DEC

* Generate frame bias matrix.

CALL iau_IR ( RB )

CALL iau_RZ ( -0.0146D0*DAS2R, RB )

CALL iau_RY ( -0.041775D0*DAS2R * SIN(84381.448D0*DAS2R), RB )

CALL iau_RX ( 0.0068192D0*DAS2R, RB )

* Convert into r-vector form.

CALL iau_RM2V ( RB, VB )

* Report.

CALL iau_P2S ( VB, RA, DEC, ANGLE )

CALL iau_A2TF ( 1, RA, SIGN, IHMSF )

CALL iau_A2AF ( 0, DEC, SIGN, IDMSF )

WRITE ( *, '(1X,''Frame bias is'',F5.1,'' mas around'',' //

: '3I3.2,''.'',I1,1X,A,I2.2,2I3.2,'' GCRS.'')' )

: ANGLE*1D3/DAS2R,IHMSF, SIGN, (IDMSF(I),I=1,3)

END

The resulting report is:

Frame bias is 23.1 mas around 19 29 14.8 -39 06 19 GCRS.

3For clarity, the code uses literal angles; a real application would either get them by calling iau_BI00 or would
generate the matrix by calling iau_PFW06 followed by iau_FW2M.
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SOFA provides just two routines for dealing with r-vectors, namely the conversions between
r-matrix and r-vector:

• r-matrix to r-vector, iau_RM2V, p50

• r-vector to r-matrix, iau_RV2M, p51

2.4 PV-vectors

SOFA calls a 3-vector used to represent a direction (whether of unit length or not) a “p-vector”,
mainly to distinguish it from an r-vector, and the related routines (see Section 2.2.1) work on all
sorts of 3-vector, including for example changes of attitude by computing r-matrix × p-vector.
However, special additional support is provided for the common case where for a body in space
both position and velocity are available. This is SOFA’s “pv-vector”, which consists of a pair of
3-vectors containing [x, y, z ] and [ ẋ, ẏ, ż ] respectively.

The following routines are provided:

• zero a pv-vector, iau_ZPV, p72

• copy a pv-vector, iau_CPV, p26

• create a pv-vector by appending zero velocity to a p-vector, iau_P2PV, p30

• dispense with the velocity to leave a p-vector, iau_PV2P, p40

• create a pv-vector from spherical coordinates, iau_S2PV, p60

• transform a pv-vector into spherical coordinates, iau_PV2S, p41

• add two pv-vectors together, iau_PVPPV, p45

• subtract one pv-vector from another, iau_PVMPV, p44

• form the scalar product of two pv-vectors, iau_PVDPV, p42

• form the vector product of two pv-vectors, iau_PVXPV, p48

• find the modulus of a pv-vector i.e. extract distance and speed, iau_PVM, p43

• multiply position and velocity by a scalar, iau_SXPV, p65

• multiply position and velocity separately by different scalars, iau_S2XPV, p61

• update the position part of a pv-vector, iau_PVU, p46

• update the position part of a pv-vector returning only the position, iau_PVUP, p47

• product of r-matrix and pv-vector, iau_RXPV, p54

• product of transpose of r-matrix and pv-vector, iau_TRXPV, p70



13

3 Reference material

3.1 SOFA vector-matrix conventions

When setting out vector and matrix expressions in mathematical notation there are choices to
be made about the relation of rows and columns and associated indices. In addition, computer
programming languages add further complications in that the order in which items are stored
in memory has to be decided.

Although the present document is tailored towards SOFA’s Fortran implementation, it will be
useful to compare and contrast the two supported languages, the other being C. This will not
only help developers who need to use both languages, but may also cast light on any choices
that may seem surprising in the context of one language or the other.

Setting out the conventions clearly will also provide an opportunity to present some of the
basic formulas. However, there will be no attempt to provide a comprehensive treatment of the
underlying algebra (what operations commute, how sums are formed, etc.), beyond stressing at
every opportunity that the order in which successive rotations are applied is crucial.

3.1.1 p-vectors

The convention for p-vectors is that they are considered to be column vectors:

a =





x
y
z





It goes without saying that the three elements x, y and z occupy successive memory locations
in both C and Fortran.

The spatial length of the vector is called the modulus, given by the routine iau_PM:

|a| = (x2 + y2 + z2 )1/2

For a unit vector the modulus is 1, and the three components are direction cosines.

The formula for scalar product of two vectors a and b is:

a · b = axbx + ayby + azbz

The result is a scalar equal to |a||b| cos θ, where θ is the angle between the two vectors, and
hence for two unit vectors it is simply cos θ. Scalar product can be calculated by calling the
iau_PDP routine, p34.

The formula for vector product is:

a× b =

∣

∣

∣

∣

∣

∣

i j k

ax ay az
bx by bz

∣

∣

∣

∣

∣

∣

=





aybz − azby
azbx − axbz
axby − aybx



 ,



14 3 REFERENCE MATERIAL

where i, j and k are the unit vectors forming the xyz triad. The result is a vector of magnitude
|a||b| sin θ, where θ is the angle between the two vectors, and with the direction given by the
“right-hand rule”, where a×b is the thumb, a is the forefinger and b is the middle finger. Thus
when a and b are both unit vectors, |a × b| is simply sin θ. Vector product can be calculated
by calling the iau_PXP routine, p49.

3.1.2 pv-vectors

For pv-vectors, the convention is that the two 3-vector components occupy successive triples
of memory locations, first position and then velocity. This is convenient because any of the
p-vector routines can be used to process either the position part or the velocity part without
the routine having to know that it is part of a pv-vector. The consequence is that whereas in C
the dimensions are [2][3], in Fortran they are (3,2).

3.1.3 r-matrices

Writing the elements of a matrix R with indices i, j where i is row and j is column as follows:

R =





R11 R12 R13

R21 R22 R23

R31 R32 R33



 ,

in Fortran these correspond to array elements:





(1, 1) (1, 2) (1, 3)
(2, 1) (2, 2) (2, 3)
(3, 1) (3, 2) (3, 3)



 ,

and in C:





[0][0] [0][1] [0][2]
[1][0] [1][1] [1][2]
[2][0] [2][1] [2][2]



 .

However, the memory storage order is different in the two languages. In Fortran the matrix
elements are stored in this order:

(1,1), (2,1), (3,1), (1,2), (2,2), (3,2), (1,3), (2,3), (3,3).

but in C the order is:

[0][0], [0][1], [0][2], [1][0], [1][1], [1][2], [2][0], [2][1], [2][2],
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In other words, in memory, successive triples are columns in Fortran and rows in C.

To refer a p-vector a to a different frame using rotation matrix R we evaluate the product
b = Ra thus:





bx
by
bz



 =





R11 ax +R12 ay +R13 az
R21 ax +R22 ay +R23 az
R31 ax +R32 ay +R33 az



 ,

which is what the routine iau_RXP (p53) does. The inverse transformation is a = R−1 b:





ax
ay
az



 =





R11 bx +R21 by +R31 bz
R12 bx +R22 by +R32 bz
R13 bx +R23 by +R33 bz



 ,

which is what iau_TRXP (p69) does.

The matrix product C = BA takes matrix A and rotates it using matrix B to give matrix C;
as always, note the order. In terms of matrix elements:

C =





A11B11 +A12B21 +A13B31 A11B12 +A12B22 +A13B32 A11B13 +A12B23 +A13B33

A21B11 +A22B21 +A23B31 A21B12 +A22B22 +A23B32 A21B13 +A22B23 +A23B33

A31B11 +A32B21 +A33B31 A31B12 +A32B22 +A33B32 A31B13 +A32B23 +A33B33



 ,

This is what the routine iau_RXR (p55) does.
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3.2 The twelve r-matrices

Any 3D reorientation can be broken into three successive “elemental” rotations about one or
other of the coordinate axes. Discounting degenerate cases where successive rotations are about
the same axis, there are twelve possible instances, six using all three axes and another six where
the first and third rotations are about the same axis.4

In the matrices listed on the next two pages, successive rotations are φ then θ then ψ about
coordinate axes i, j and k, and are formed by evaluating Rk(ψ)Rj(θ)Ri(φ) (note the order).
The three axes 123 are synonymous with xyz. Thus the matrix labeled 1-3-2 corresponds to
rotations φ about the x-axis, followed by θ about the z-axis followed by ψ about the y-axis,
giving the expression Ry(ψ)Rz(θ)Rx(φ). The most common choice in fundamental astronomy
applications is 3-1-3.

These explicit representations of the matrix elements are useful when solving an r-matrix for
one or more of the angles used in its formation.

The sign convention for the angles that SOFA uses is that they have positive values when they
represent a rotation that appears clockwise when looking in the positive direction of the axis.
Moreover SOFA uses rotations only to reorient the coordinate system, as opposed to rotating
the vector itself within a fixed coordinate system.

Fortran code to form the 3-1-3 matrix might look like this:

DOUBLE PRECISION RM(3,3), PHI, THETA, PSI

CALL sla_IR ( RM )

CALL sla_RZ ( PHI, RM )

CALL sla_RX ( THETA, RM )

CALL sla_RZ ( PSI, RM )

4SOFA calls the angles for all twelve axis sequences simply “Euler angles”, but various names are in use to
distinguish the two sets of six axis sequences, such as “Tait-Bryan angles” for the three-axis case and “proper”
or “classic” Euler angles when the same axis is used twice.
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Rz(ψ)Ry(θ)Rx(φ)
1-2-3

=





cosψ cos θ cosψ sin θ sinφ+ sinψ cosφ − cosψ sin θ cosφ+ sinψ sinφ
− sinψ cos θ − sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ+ cosψ sinφ

sin θ − cos θ sinφ cos θ cosφ





Ry(ψ)Rz(θ)Rx(φ)
1-3-2

=





cosψ cos θ cosψ sin θ cosφ+ sinψ sinφ cosψ sin θ sinφ− sinψ cosφ
− sin θ cos θ cosφ cos θ sinφ

sinψ cos θ sinψ sin θ cosφ− cosψ sinφ sinψ sin θ sinφ+ cosψ cosφ





Rx(ψ)Rz(θ)Ry(φ)
2-3-1

=





cos θ cosφ sin θ − cos θ sinφ
− cosψ sin θ cosφ+ sinψ sinφ cosψ cos θ cosψ sin θ sinφ+ sinψ cosφ
sinψ sin θ cosφ+ cosψ sinφ − sinψ cos θ − sinψ sin θ sinφ+ cosψ cosφ





Rz(ψ)Rx(θ)Ry(φ)
2-1-3

=





cosψ cosφ+ sinψ sin θ sinφ sinψ cos θ − cosψ sinφ+ sinψ sin θ cosφ
− sinψ cosφ+ cosψ sin θ sinφ cosψ cos θ sinψ sinφ+ cosψ sin θ cosφ

cos θ sinφ − sin θ cos θ cosφ





Ry(ψ)Rx(θ)Rz(φ)
3-1-2

=





cosψ cosφ− sinψ sin θ sinφ cosψ sinφ+ sinψ sin θ cosφ − sinψ cos θ
− cos θ sinφ cos θ cosφ sin θ

sinψ cosφ+ cosψ sin θ sinφ sinψ sinφ− cosψ sin θ cosφ cosψ cos θ





Rx(ψ)Ry(θ)Rz(φ)
3-2-1

=





cos θ cosφ cos θ sinφ − sin θ
− cosψ sinφ+ sinψ sin θ cosφ cosψ cosφ+ sinψ sin θ sinφ sinψ cos θ
sinψ sinφ+ cosψ sin θ cosφ − sinψ cosφ+ cosψ sin θ sinφ cosψ cos θ
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Rx(ψ)Ry(θ)Rx(φ)
1-2-1

=





cos θ sin θ sinφ − sin θ cosφ
sinψ sin θ cosψ cosφ− sinψ cos θ sinφ cosψ sinφ+ sinψ cos θ cosφ
cosψ sin θ − sinψ cosφ− cosψ cos θ sinφ − sinψ sinφ+ cosψ cos θ cosφ





Rx(ψ)Rz(θ)Rx(φ)
1-3-1

=





cos θ sin θ cosφ sin θ sinφ
− cosψ sin θ cosψ cos θ cosφ− sinψ sinφ cosψ cos θ sinφ+ sinψ cosφ
sinψ sin θ − sinψ cos θ cosφ− cosψ sinφ − sinψ cos θ sinφ+ cosψ cosφ





Ry(ψ)Rx(θ)Ry(φ)
2-1-2

=





cosψ cosφ− sinψ cos θ sinφ sinψ sin θ − cosψ sinφ− sinψ cos θ cosφ
sin θ sinφ cos θ sin θ cosφ

sinψ cosφ+ cosψ cos θ sinφ − cosψ sin θ − sinψ sinφ+ cosψ cos θ cosφ





Ry(ψ)Rz(θ)Ry(φ)
2-3-2

=





cosψ cos θ cosφ− sinψ sinφ cosψ sin θ − cosψ cos θ sinφ− sinψ cosφ
− sin θ cosφ cos θ sin θ sinφ

sinψ cos θ cosφ+ cosψ sinφ sinψ sin θ − sinψ cos θ sinφ+ cosψ cosφ





Rz(ψ)Rx(θ)Rz(φ)
3-1-3

=





cosψ cosφ− sinψ cos θ sinφ cosψ sinφ+ sinψ cos θ cosφ sinψ sin θ
− sinψ cosφ− cosψ cos θ sinφ − sinψ sinφ+ cosψ cos θ cosφ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ





Rz(ψ)Ry(θ)Rz(φ)
3-2-3

=





cosψ cos θ cosφ− sinψ sinφ cosψ cos θ sinφ+ sinψ cosφ − cosψ sin θ
− sinψ cos θ cosφ− cosψ sinφ − sinψ cos θ sinφ+ cosψ cosφ sinψ sin θ

sin θ cosφ sin θ sinφ cos θ
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3.3 Routine specifications

iau_A2AF radians to deg, arcmin, arcsec iau_A2AF

CALL :

CALL iau_A2AF ( NDP, ANGLE, SIGN, IDMSF )

ACTION :

Decompose radians into degrees, arcminutes, arcseconds, fraction.

GIVEN :

NDP i resolution (Note 1)
ANGLE d angle in radians

RETURNED :

SIGN c ’+’ or ’-’
IDMSF i(4) degrees, arcminutes, arcseconds, fraction

NOTES :

1. NDP is interpreted as follows:

NDP resolution

: ...0000 00 00

-7 1000 00 00

-6 100 00 00

-5 10 00 00

-4 1 00 00

-3 0 10 00

-2 0 01 00

-1 0 00 10

0 0 00 01

1 0 00 00.1

2 0 00 00.01

3 0 00 00.001

: 0 00 00.000...

2. The largest positive useful value for NDP is determined by the size of ANGLE, the format
of DOUBLE PRECISION numbers on the target platform, and the risk of overflowing
IDMSF(4). On a typical platform, for ANGLE up to 2π, the available floating-point
precision might correspond to NDP = 12. However, the practical limit is typically
NDP = 9, set by the capacity of a 32-bit IDMSF(4).

3. The absolute value of ANGLE may exceed 2π. In cases where it does not, it is up to
the caller to test for and handle the case where ANGLE is very nearly 2π and rounds
up to 360◦, by testing for IDMSF(1).EQ.360 and setting IDMSF(1-4) to zero.
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iau_A2TF radians to hours, minutes, seconds iau_A2TF

CALL :

CALL iau_A2TF ( NDP, ANGLE, SIGN, IHMSF )

ACTION :

Decompose radians into hours, minutes, seconds, fraction.

GIVEN :

NDP i resolution (Note 1)
ANGLE d angle in radians

RETURNED :

SIGN c ’+’ or ’-’
IHMSF i(4) hours, minutes, seconds, fraction

NOTES :

1. NDP is interpreted as follows:

NDP resolution

: ...0000 00 00

-7 1000 00 00

-6 100 00 00

-5 10 00 00

-4 1 00 00

-3 0 10 00

-2 0 01 00

-1 0 00 10

0 0 00 01

1 0 00 00.1

2 0 00 00.01

3 0 00 00.001

: 0 00 00.000...

2. The largest positive useful value for NDP is determined by the size of ANGLE, the format
of DOUBLE PRECISION numbers on the target platform, and the risk of overflowing
IHMSF(4). On a typical platform, for ANGLE up to 2π, the available floating-point
precision might correspond to NDP = 12. However, the practical limit is typically
NDP = 9, set by the capacity of a 32-bit IHMSF(4).

3. The absolute value of ANGLE may exceed 2π. In cases where it does not, it is up to
the caller to test for and handle the case where ANGLE is very nearly 2π and rounds
up to 360◦, by testing for IHMSF(1)= 360 and setting IHMSF(1-4) to zero.
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iau_AF2A deg, arcmin, arcsec to radians iau_AF2A

CALL :

CALL iau_AF2A ( S, IDEG, IAMIN, ASEC, RAD, J )

ACTION :

Convert degrees, arcminutes, arcseconds to radians.

GIVEN :

S c sign: ’-’ = negative, otherwise positive
IDEG i degrees
IAMIN i arcminutes
ASEC d arcseconds

RETURNED :

RAD d angle in radians
J i status: 0 = OK

1 = IDEG outside range 0-359
2 = IAMIN outside range 0-59
3 = ASEC outside range 0-59.999...

NOTES :

1. If the S argument is a string, only the leftmost character is used and no warning
status is provided.

2. The result is computed even if any of the range checks fail.

3. Negative IDEG, IAMIN and/or ASEC produce a warning status, but the absolute value
is used in the conversion.

4. If there are multiple errors, the status value reflects only the first, the smallest taking
precedence.
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iau_ANP normalize radians to range 0 to 2π iau_ANP

CALL :

D = iau_ANP ( A )

ACTION :

Normalize angle into the range 0 ≤ A < 2π.

GIVEN :

A d angle (radians)

RETURNED (function value) :

d angle in range 0-2π
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iau_ANPM normalize radians to range −π to +π iau_ANPM

CALL :

D = iau_ANPM ( A )

ACTION :

Normalize angle into the range −π ≤ A < +π.

GIVEN :

A d angle (radians)

RETURNED (function value) :

d angle in range ±π
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iau_C2S unit vector to spherical iau_C2S

CALL :

CALL iau_C2S ( P, THETA, PHI )

ACTION :

P-vector to spherical coordinates.

GIVEN :

P d(3) p-vector

RETURNED :

THETA d longitude angle (radians)
PHI d latitude angle (radians)

NOTES :

1. The vector P can have any magnitude; only its direction is used.

2. If P is null, zero THETA and PHI are returned.

3. At either pole, zero THETA is returned.



3.3 Routine specifications 25

iau_CP copy p-vector iau_CP

CALL :

CALL iau_CP ( P, C )

ACTION :

Copy a p-vector.

GIVEN :

P d(3) p-vector to be copied

RETURNED :

C d(3) copy
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iau_CPV copy pv-vector iau_CPV

CALL :

CALL iau_CPV ( PV, C )

ACTION :

Copy a position/velocity vector.

GIVEN :

PV d(3,2) position/velocity vector to be copied

RETURNED :

C d(3,2) copy
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iau_CR copy r-matrix iau_CR

CALL :

CALL iau_CR ( R, C )

ACTION :

Copy an r-matrix.

GIVEN :

R d(3,3) r-matrix to be copied

RETURNED :

C d(3,3) copy
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iau_D2TF days to hours, minutes, seconds iau_D2TF

CALL :

CALL iau_D2TF ( NDP, DAYS, SIGN, IHMSF )

ACTION :

Decompose days to hours, minutes, seconds, fraction.

GIVEN :

NDP i resolution (Note 1)
DAYS d interval in days

RETURNED :

SIGN c ’+’ or ’-’
IHMSF i(4) hours, minutes, seconds, fraction

NOTES :

1. NDP is interpreted as follows:

NDP resolution

: ...0000 00 00

-7 1000 00 00

-6 100 00 00

-5 10 00 00

-4 1 00 00

-3 0 10 00

-2 0 01 00

-1 0 00 10

0 0 00 01

1 0 00 00.1

2 0 00 00.01

3 0 00 00.001

: 0 00 00.000...

2. The largest positive useful value for NDP is determined by the size of DAYS, the format
of DOUBLE PRECISION numbers on the target platform, and the risk of overflowing
IHMSF(4). On a typical platform, for DAYS up to 1D0, the available floating-point
precision might correspond to NDP = 12. However, the practical limit is typically
NDP = 9, set by the capacity of a 32-bit capacity of a 32-bit IHMSF(4).

3. The absolute value of DAYS may exceed 1D0. In cases where it does not, it is up to
the caller to test for and handle the case where DAYS is very nearly 1D0 and rounds
up to 24 hours, by testing for IHMSF(1).EQ. 24 and setting IHMSF(1-4) to zero.
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iau_IR initialize r-matrix to identity iau_IR

CALL :

CALL iau_IR ( R )

ACTION :

Initialize an r-matrix to the identity matrix.

RETURNED :

R d(3,3) r-matrix
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iau_P2PV append zero velocity to p-vector iau_P2PV

CALL :

CALL iau_P2PV ( P, PV )

ACTION :

Extend a p-vector to a pv-vector by appending a zero velocity.

GIVEN :

P d(3) p-vector

RETURNED :

PV d(3,2) pv-vector
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iau_P2S p-vector to spherical iau_P2S

CALL :

CALL iau_P2S ( P, THETA, PHI, R )

ACTION :

P-vector to spherical polar coordinates.

GIVEN :

P d(3) p-vector

RETURNED :

THETA d longitude angle (radians)
PHI d latitude angle (radians)
R d radial distance

NOTES :

1. If P is null, zero THETA, PHI and R are returned.

2. At either pole, zero THETA is returned.
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iau_PAP position-angle from p-vectors iau_PAP

CALL :

CALL iau_PAP ( A, B, THETA )

ACTION :

Position-angle from two p-vectors.

GIVEN :

A d(3) direction of reference point
B d(3) direction of point whose PA is required

RETURNED :

THETA d position angle of B with respect to A (radians)

NOTES :

1. The result is the position angle, in radians, of direction B with respect to direction
A. It is in the range −π to +π. The sense is such that if B is a small distance
“north” of A the position angle is approximately zero, and if B is a small distance
“east” of A the position angle is approximately +π/2.

2. A and B need not be unit vectors.

3. Zero is returned if the two directions are the same or if either vector is null.

4. If A is at a pole, the result is ill-defined.
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iau_PAS position-angle from spherical coordinates iau_PAS

CALL :

CALL iau_PAS ( AL, AP, BL, BP, THETA )

ACTION :

Position-angle from spherical coordinates.

GIVEN :

AL d longitude of point A (e.g. RA) in radians
AP d latitude of point A (e.g. Dec) in radians
BL d longitude of point B
BP d latitude of point B

RETURNED :

THETA d position angle of B with respect to A

NOTES :

1. The result is the bearing (position angle), in radians, of point B with respect to point
A. It is in the range −π to +π. The sense is such that if B is a small distance “east”
of point A, the bearing is approximately +π/2.

2. Zero is returned if the two points are coincident.
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iau_PDP dot product of two p-vectors iau_PDP

CALL :

CALL iau_PDP ( A, B, ADB )

ACTION :

p-vector inner (≡ scalar≡ dot) product.

GIVEN :

A d(3) first p-vector
B d(3) second p-vector

RETURNED :

ADB d scalar product A.B
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iau_PM modulus of p-vector iau_PM

CALL :

CALL iau_PM ( P, R )

ACTION :

Modulus of p-vector.

GIVEN :

P d(3) p-vector

RETURNED :

R d modulus |P|
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iau_PMP p-vector minus p-vector iau_PMP

CALL :

CALL iau_PMP ( A, B, AMB )

ACTION :

P-vector subtraction.

GIVEN :

A d(3) first p-vector
B d(3) second p-vector

RETURNED :

AMB d(3) A−B
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iau_PN normalize p-vector returning modulus iau_PN

CALL :

CALL iau_PN ( P, R, U )

ACTION :

Convert a p-vector into modulus and unit vector.

GIVEN :

P d(3) p-vector

RETURNED :

R d modulus |P|

U d(3) unit vector P̂

NOTE :

If P is null, the result is null. Otherwise the result is a unit vector.
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iau_PPP p-vector plus p-vector iau_PPP

CALL :

CALL iau_PPP ( A, B, APB )

ACTION :

P-vector addition.

GIVEN :

A d(3) first p-vector
B d(3) second p-vector

RETURNED :

APB d(3) A+B
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iau_PPSP p-vector plus scaled p-vector iau_PPSP

CALL :

CALL iau_PPSP ( A, S, B, APSB )

ACTION :

P-vector plus scaled p-vector.

GIVEN :

A d(3) first p-vector
S d scalar (multiplier for B)
B d(3) second p-vector

RETURNED :

APSB d(3) A+ S ×B
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iau_PV2P discard velocity component of pv-vector iau_PV2P

CALL :

CALL iau_PV2P ( PV, P )

ACTION :

Discard velocity component of a pv-vector.

GIVEN :

PV d(3,2) pv-vector

RETURNED :

P d(3) p-vector
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iau_PV2S pv-vector to spherical iau_PV2S

CALL :

CALL iau_PV2S ( PV, THETA, PHI, R, TD, PD, RD )

ACTION :

Convert position/velocity from Cartesian to spherical coordinates.

GIVEN :

PV d(3,2) pv-vector

RETURNED :

THETA d longitude angle (radians)
PHI d latitude angle (radians)
R d radial distance
TD d rate of change of THETA
PD d rate of change of PHI
RD d rate of change of R

NOTES :

1. If the position part of PV is null, THETA, PHI, TD and PD are indeterminate. This is
handled by extrapolating the position through unit time by using the velocity part of
PV. This moves the origin without changing the direction of the velocity component.
If the position and velocity components of PV are both null, zeroes are returned for
all six results.

2. If the position is a pole, THETA, TD and PD are indeterminate. In such cases zeroes
are returned for all three.
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iau_PVDPV dot product of two pv-vectors iau_PVDPV

CALL :

CALL iau_PVDPV ( A, B, ADB )

ACTION :

Inner (≡ scalar≡ dot) product of two pv-vectors.

GIVEN :

A d(3,2) first pv-vector
B d(3,2) second pv-vector

RETURNED :

ADB d(2) A.B (see note)

NOTE :

If the position and velocity components of the two pv-vectors are (Ap,Av) and (Bp,Bv),
the result, A.B, is the pair of numbers (Ap.Bp,Ap.Bv + Av.Bp). The two numbers are
the dot-product of the two p-vectors and its derivative.
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iau_PVM modulus of pv-vector iau_PVM

CALL :

CALL iau_PVM ( PV, R, S )

ACTION :

Modulus of pv-vector.

GIVEN :

PV d(3,2) pv-vector

RETURNED :

R d modulus of position component
S d modulus of velocity component
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iau_PVMPV pv-vector minus pv-vector iau_PVMPV

CALL :

CALL iau_PVMPV ( A, B, AMB )

ACTION :

Subtract one pv-vector from another.

GIVEN :

A d(3,2) first pv-vector
B d(3,2) second pv-vector

RETURNED :

AMB d(3,2) A−B



3.3 Routine specifications 45

iau_PVPPV pv-vector plus pv-vector iau_PVPPV

CALL :

CALL iau_PVPPV ( A, B, APB )

ACTION :

Add one pv-vector to another.

GIVEN :

A d(3,2) first pv-vector
B d(3,2) second pv-vector

RETURNED :

APB d(3,2) A+B
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iau_PVU update pv-vector iau_PVU

CALL :

CALL iau_PVU ( DT, PV, UPV )

ACTION :

Update a pv-vector.

GIVEN :

DT d time interval
PV d(3,2) pv-vector

RETURNED :

UPV d(3,2) position part of PV updated, velocity part unchanged

NOTES :

1. “Update” means “refer the position component of the vector to a new date DT time
units from the existing date”.

2. The time units of DT must match those of the velocity.
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iau_PVUP update pv-vector discarding velocity iau_PVUP

CALL :

CALL iau_PVUP ( DT, PV, P )

ACTION :

Update a pv-vector, discarding the velocity component.

GIVEN :

DT d time interval
PV d(3,2) pv-vector

RETURNED :

P d(3) p-vector

NOTES :

1. “Update” means “refer the position component of the vector to a new date DT time
units from the existing date”.

2. The time units of DT must match those of the velocity.
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iau_PVXPV cross product of two pv-vectors iau_PVXPV

CALL :

CALL iau_PVXPV ( A, B, AXB )

ACTION :

Outer (≡ vector≡ cross) product of two pv-vectors.

GIVEN :

A d(3,2) first pv-vector
B d(3,2) second pv-vector

RETURNED :

AXB d(3,2) A ∧B

NOTE :

If the position and velocity components of the two pv-vectors are (Ap, Av) and (Bp, Bv),
the result, A ∧B, is the pair of vectors (Ap ∧Bp, Ap ∧Bv + Av ∧Bp). The two vectors
are the cross-product of the two p-vectors and its derivative.
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iau_PXP cross product of two p-vectors iau_PXP

CALL :

CALL iau_PXP ( A, B, AXB )

ACTION :

p-vector outer (≡ vector≡ cross) product.

GIVEN :

A d(3) first p-vector
B d(3) second p-vector

RETURNED :

AXB d(3) A ∧B
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iau_RM2V r-matrix to r-vector iau_RM2V

CALL :

CALL iau_RM2V ( R, W )

ACTION :

Express an r-matrix as an r-vector.

GIVEN :

R d(3,3) rotation matrix

RETURNED :

W d(3) rotation vector (Note 1)

NOTES :

1. A rotation matrix describes a rotation through some angle about some arbitrary axis
called the Euler axis. The “rotation vector” returned by this routine has the same
direction as the Euler axis, and its magnitude is the angle in radians. (The magnitude
and direction can be separated by means of the routine iau_PN.)

2. If R is null, so is the result. If R is not a rotation matrix the result is undefined.
R must be proper (i.e. have a positive determinant) and real orthogonal (inverse =
transpose).

3. The reference frame rotates clockwise as seen looking along the rotation vector from
the origin.
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iau_RV2M r-vector to r-matrix iau_RV2M

CALL :

CALL iau_RV2M ( W, R )

ACTION :

Form the r-matrix corresponding to a given r-vector.

GIVEN :

W d(3) rotation vector (Note 1)

RETURNED :

R d(3,3) rotation matrix

NOTES :

1. A rotation matrix describes a rotation through some angle about some arbitrary axis
called the Euler axis. The “rotation vector” supplied to this routine has the same
direction as the Euler axis, and its magnitude is the angle in radians.

2. If W is null, the unit matrix is returned.

3. The reference frame rotates clockwise as seen looking along the rotation vector from
the origin.
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iau_RX rotate r-matrix about x axis iau_RX

CALL :

CALL iau_RX ( PHI, R )

ACTION :

Rotate an r-matrix about the x-axis.

GIVEN :

PHI d angle φ (radians)

GIVEN and RETURNED :

R d(3,3) r-matrix, rotated

NOTES :

1. Calling this routine with positive φ incorporates in the supplied r-matrix R an ad-
ditional rotation, about the x-axis, anticlockwise as seen looking towards the origin
from positive x.

2. The additional rotation can be represented by this matrix:





1 0 0
0 + cosφ +sinφ
0 − sinφ +cosφ
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iau_RXP product of r-matrix and p-vector iau_RXP

CALL :

CALL iau_RXP ( R, P, RP )

ACTION :

Multiply a p-vector by an r-matrix.

GIVEN :

R d(3,3) r-matrix
P d(3) p-vector

RETURNED :

RP d(3) R *P



54 3 REFERENCE MATERIAL

iau_RXPV product of r-matrix and pv-vector iau_RXPV

CALL :

CALL iau_RXPV ( R, PV, RPV )

ACTION :

Multiply a pv-vector by an r-matrix.

GIVEN :

R d(3,3) r-matrix
PV d(3,2) pv-vector

RETURNED :

RPV d(3,2) R *PV

NOTE :

The algorithm is for the simple case where the r-matrix R is not a function of time. The
case where R is a function of time leads to an additional velocity component equal to the
product of the derivative of R and the position part of PV .
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iau_RXR r-matrix multiply iau_RXR

CALL :

CALL iau_RXR ( A, B, ATB )

ACTION :

Multiply two r-matrices.

GIVEN :

A d(3,3) first r-matrix
B d(3,3) second r-matrix

RETURNED :

ATB d(3,3) A *B
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iau_RY rotate r-matrix about y axis iau_RY

CALL :

CALL iau_RY ( THETA, R )

ACTION :

Rotate an r-matrix about the y-axis.

GIVEN :

THETA d angle θ (radians)

GIVEN and RETURNED :

R d(3,3) r-matrix, rotated

NOTES :

1. Calling this routine with positive θ incorporates in the supplied r-matrix R an ad-
ditional rotation, about the y-axis, anticlockwise as seen looking towards the origin
from positive y.

2. The additional rotation can be represented by this matrix:





+cos θ 0 − sin θ
0 1 0

+ sin θ 0 + cos θ
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iau_RZ rotate r-matrix about z axis iau_RZ

CALL :

CALL iau_RZ ( PSI, R )

ACTION :

Rotate an r-matrix about the z-axis.

GIVEN :

PSI d angle ψ (radians)

GIVEN and RETURNED :

R d(3,3) r-matrix, rotated

NOTES :

1. Calling this routine with positive ψ incorporates in the supplied r-matrix R an ad-
ditional rotation, about the z-axis, anticlockwise as seen looking towards the origin
from positive z.

2. The additional rotation can be represented by this matrix:





+cosψ +sinψ 0
− sinψ +cosψ 0

0 0 1
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iau_S2C spherical to unit vector iau_S2C

CALL :

CALL iau_S2C ( THETA, PHI, C )

ACTION :

Convert spherical coordinates to Cartesian.

GIVEN :

THETA d longitude angle (radians)
PHI d latitude angle (radians)

RETURNED :

C d(3) direction cosines
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iau_S2P spherical to p-vector iau_S2P

CALL :

CALL iau_S2P ( THETA, PHI, R, P )

ACTION :

Convert spherical polar coordinates to p-vector.

GIVEN :

THETA d longitude angle (radians)
PHI d latitude angle (radians)
R d radial distance

RETURNED :

P d(3) Cartesian coordinates
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iau_S2PV spherical to pv-vector iau_S2PV

CALL :

CALL iau_S2PV ( THETA, PHI, R, TD, PD, RD, PV )

ACTION :

Convert position/velocity from spherical to Cartesian coordinates.

GIVEN :

THETA d longitude angle (radians)
PHI d latitude angle (radians)
R d radial distance
TD d rate of change of THETA
PD d rate of change of PHI
RD d rate of change of R

RETURNED :

PV d(3,2) pv-vector
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iau_S2XPV multiply pv-vector by two scalars iau_S2XPV

CALL :

CALL iau_S2XPV ( S1, S2, PV, SPV )

ACTION :

Multiply a pv-vector by two scalars.

GIVEN :

S1 d scalar to multiply position component by
S2 d scalar to multiply velocity component by
PV d(3,2) pv-vector

RETURNED :

SPV d(3,2) pv-vector: p scaled by S1, v scaled by S2
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iau_SEPP angular separation from p-vectors iau_SEPP

CALL :

CALL iau_SEPP ( A, B, S )

ACTION :

Angular separation between two p-vectors.

GIVEN :

A d(3) first p-vector (not necessarily unit length)
B d(3) second p-vector (not necessarily unit length)

RETURNED :

S d angular separation (radians, always positive)

NOTES :

1. If either vector is null, a zero result is returned.

2. The angular separation is most simply formulated in terms of scalar product. How-
ever, this gives poor accuracy for angles near zero and π. The present algorithm uses
both cross product and dot product, to deliver full accuracy whatever the size of the
angle.



3.3 Routine specifications 63

iau_SEPS angular separation from spherical coordinates iau_SEPS

CALL :

CALL iau_SEPS ( AL, AP, BL, BP, S )

ACTION :

Angular separation between two sets of spherical coordinates.

GIVEN :

AL d first longitude (radians)
AP d first latitude (radians)
BL d second longitude (radians)
BP d second latitude (radians)

RETURNED :

S d angular separation (radians)
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iau_SXP multiply p-vector by scalar iau_SXP

CALL :

CALL iau_SXP ( S, P, SP )

ACTION :

Multiply a p-vector by a scalar.

GIVEN :

S d scalar
P d(3) p-vector

RETURNED :

SP d(3) S *P
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iau_SXPV multiply pv-vector by scalar iau_SXPV

CALL :

CALL iau_SXPV ( S, PV, SPV )

ACTION :

Multiply a pv-vector by a scalar.

GIVEN :

S d scalar
PV d(3,2) pv-vector

RETURNED :

SPV d(3,2) S *PV
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iau_TF2A hours, minutes, seconds to radians iau_TF2A

CALL :

CALL iau_TF2A ( S, IHOUR, IMIN, SEC, RAD, J )

ACTION :

Convert hours, minutes, seconds to radians.

GIVEN :

S c sign: ’-’ = negative, otherwise positive
IHOUR i hours
IMIN i minutes
SEC d seconds

RETURNED :

RAD d angle in radians
J i status: 0 = OK

1 = IHOUR outside range 0-23
2 = IMIN outside range 0-59
3 = SEC outside range 0-59.999...

NOTES :

1. If the S argument is a string, only the leftmost character is used and no warning
status is provided.

2. The result is computed even if any of the range checks fail.

3. Negative IHOUR, IMIN and/or SEC produce a warning status, but the absolute value
is used in the conversion.

4. If there are multiple errors, the status value reflects only the first, the smallest taking
precedence.
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iau_TF2D hours, minutes, seconds to days iau_TF2D

CALL :

CALL iau_TF2D ( S, IHOUR, IMIN, SEC, DAYS, J )

ACTION :

Convert hours, minutes, seconds to days.

GIVEN :

S c sign: ’-’ = negative, otherwise positive
IHOUR i hours
IMIN i minutes
SEC d seconds

RETURNED :

DAYS d interval in days
J i status: 0 = OK

1 = IHOUR outside range 0-23
2 = IMIN outside range 0-59
3 = SEC outside range 0-59.999...

NOTES :

1. If the S argument is a string, only the leftmost character is used and no warning
status is provided.

2. The result is computed even if any of the range checks fail.

3. Negative IHOUR, IMIN and/or SEC produce a warning status, but the absolute value
is used in the conversion.

4. If there are multiple errors, the status value reflects only the first, the smallest taking
precedence.
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iau_TR transpose r-matrix iau_TR

CALL :

CALL iau_TR ( R, RT )

ACTION :

Transpose an r-matrix.

GIVEN :

R d(3,3) r-matrix

RETURNED :

RT d(3,3) transpose
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iau_TRXP product of r-matrix transpose and p-vector iau_TRXP

CALL :

CALL iau_TRXP ( R, P, TRP )

ACTION :

Multiply a p-vector by the transpose of an r-matrix.

GIVEN :

R d(3,3) r-matrix
P d(3) p-vector

RETURNED :

TRP d(3) RT × P
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iau_TRXPV product of r-matrix transpose and pv-vector iau_TRXPV

CALL :

CALL iau_TRXPV ( R, PV, TRPV )

ACTION :

Multiply a pv-vector by the transpose of an r-matrix.

GIVEN :

R d(3,3) r-matrix
PV d(3,2) pv-vector

RETURNED :

TRPV d(3,2) RT × PV

NOTE :

The algorithm is for the simple case where the r-matrix R is not a function of time. The
case where R is a function of time leads to an additional velocity component equal to the
product of the derivative of RT and the position part of PV .
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iau_ZP zero p-vector iau_ZP

CALL :

CALL iau_ZP ( P )

ACTION :

Zero a p-vector.

RETURNED :

P d(3) zero p-vector
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iau_ZPV zero pv-vector iau_ZPV

CALL :

CALL iau_ZPV ( PV )

ACTION :

Zero a pv-vector.

RETURNED :

PV double(3,2) zero pv-vector
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iau_ZR initialize r-matrix to null iau_ZR

CALL :

CALL iau_ZR ( R )

ACTION :

Initialize an r-matrix to the null matrix.

RETURNED :

R double(3,3) null r-matrix
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3.4 Classified list of routines

Operations involving p-vectors and r-matrices

initialize

CALL iau_ZP ( P )

zero p-vector p71

CALL iau_ZR ( R )

initialize r-matrix to null p73

CALL iau_IR ( R )

initialize r-matrix to identity p29

copy

CALL iau_CP ( P, C )

copy p-vector p25

CALL iau_CR ( R, C )

copy r-matrix p27

build rotations

CALL iau_RX ( PHI, R )

rotate r-matrix about x p52

CALL iau_RY ( THETA, R )

rotate r-matrix about y p56

CALL iau_RZ ( PSI, R )

rotate r-matrix about z p57

spherical/Cartesian conversions

CALL iau_S2C ( THETA, PHI, C )

spherical to unit vector p58

CALL iau_C2S ( P, THETA, PHI )

unit vector to spherical p24

CALL iau_S2P ( THETA, PHI, R, P )

spherical to p-vector p59

CALL iau_P2S ( P, THETA, PHI, R )

p-vector to spherical p31
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operations on p-vectors

CALL iau_PPP ( A, B, APB )

p-vector plus p-vector p38

CALL iau_PMP ( A, B, AMB )

p-vector minus p-vector p36

CALL iau_PPSP ( A, S, B, APSB )

p-vector plus scaled p-vector p39

CALL iau_PDP ( A, B, ADB )

inner (=scalar=dot) product of two p-vectors p34

CALL iau_PXP ( A, B, AXB )

outer (=vector=cross) product of two p-vectors p49

CALL iau_PM ( P, R )

modulus of p-vector p35

CALL iau_PN ( P, R, U )

normalize p-vector returning modulus p37

CALL iau_SXP ( S, P, SP )

multiply p-vector by scalar p64

operations on r-matrices

CALL iau_RXR ( A, B, ATB )

r-matrix multiply p55

CALL iau_TR ( R, RT )

transpose r-matrix p68

matrix-vector products

CALL iau_RXP ( R, P, RP )

product of r-matrix and p-vector p53

CALL iau_TRXP ( R, P, TRP )

product of transpose of r-matrix and p-vector p69

separation and position-angle

CALL iau_SEPP ( A, B, S )

angular separation from p-vectors p62

CALL iau_SEPS ( AL, AP, BL, BP, S )

angular separation from spherical coordinates p63

CALL iau_PAP ( A, B, THETA )

position-angle from p-vectors p32

CALL iau_PAS ( AL, AP, BL, BP, THETA )

position-angle from spherical coordinates p33
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rotation vectors

CALL iau_RV2M ( P, R )

r-vector to r-matrix p51

CALL iau_RM2V ( R, P )

r-matrix to r-vector p50

Operations involving pv-vectors

initialize

CALL iau_ZPV ( PV )

zero pv-vector p72

copy/extend/extract

CALL iau_CPV ( PV, C )

copy pv-vector p26

CALL iau_P2PV ( P, PV )

append zero velocity to p-vector p30

CALL iau_PV2P ( PV, P )

discard velocity component of pv-vector p40

spherical/Cartesian conversions

CALL iau_S2PV ( THETA, PHI, R, TD, PD, RD, PV )

spherical to pv-vector p60

CALL iau_PV2S ( PV, THETA, PHI, R, TD, PD, RD )

pv-vector to spherical p41

operations on pv-vectors

CALL iau_PVPPV ( A, B, APB )

pv-vector plus pv-vector p45

CALL iau_PVMPV ( A, B, AMB )

pv-vector minus pv-vector p44

CALL iau_PVDPV ( A, B, ADB )

inner (=scalar=dot) product of two pv-vectors p42

CALL iau_PVXPV ( A, B, AXB )

outer (=vector=cross) product of two pv-vectors p48

CALL iau_PVM ( PV, R, S )

modulus of pv-vector p43

CALL iau_SXPV ( S, PV, SPV )

multiply pv-vector by scalar p65
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CALL iau_S2XPV ( S1, S2, PV )

multiply pv-vector by two scalars p61

CALL iau_PVU ( DT, PV, UPV )

update pv-vector p46

CALL iau_PVUP ( DT, PV, P )

update pv-vector discarding velocity p47

matrix-vector products

CALL iau_RXPV ( R, PV, RPV )

product of r-matrix and pv-vector p54

CALL iau_TRXPV ( R, PV, TRPV )

product of transpose of r-matrix and pv-vector p70

Operations on angles

wrap

D = iau_ANP ( A )

normalize radians to range 0 to 2π p22

D = iau_ANPM ( A )

normalize radians to range −π to +π p23

to sexagesimal

CALL iau_A2AF ( NDP, ANGLE, SIGN, IDMSF )

decompose radians into degrees, arcminutes, arcseconds p19

CALL iau_A2TF ( NDP, ANGLE, SIGN, IHMSF )

decompose radians into hours, minutes, seconds p20

CALL iau_D2TF ( NDP, DAYS, SIGN, IHMSF )

decompose days into hours, minutes, seconds p28

from sexagesimal

CALL iau_AF2A ( S, IDEG, IAMIN, ASEC, RAD, J )

degrees, arcminutes, arcseconds to radians p21

CALL iau_TF2A ( S, IHOUR, IMIN, SEC, RAD, J )

hours, minutes, seconds to radians p66

CALL iau_TF2D ( S, IHOUR, IMIN, SEC, DAYS, J )

hours, minutes, seconds to days p67
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CALL iau_A2AF ( NDP, ANGLE, SIGN, IDMSF ) p19

CALL iau_A2TF ( NDP, ANGLE, SIGN, IHMSF ) p20

CALL iau_AF2A ( S, IDEG, IAMIN, , J ) p21

D = iau_ANP ( A ) p22

D = iau_ANPM ( A ) p23

CALL iau_C2S ( P, THETA, PHI ) p24

CALL iau_CP ( P, C ) p25

CALL iau_CPV ( PV, C ) p26

CALL iau_CR ( R, C ) p27

CALL iau_D2TF ( NDP, DAYS, SIGN, IHMSF ) p28

CALL iau_IR ( R ) p29

CALL iau_P2PV ( P, PV ) p30

CALL iau_P2S ( P, THETA, PHI, R ) p31

CALL iau_PAP ( A, B, THETA ) p32

CALL iau_PAS ( AL, AP, BL, BP, THETA ) p33

CALL iau_PDP ( A, B, ADB ) p34

CALL iau_PM ( P, R ) p35

CALL iau_PMP ( A, B, AMB ) p36

CALL iau_PN ( P, R, U ) p37

CALL iau_PPP ( A, B, APB ) p38

CALL iau_PPSP ( A, S, B, APSB ) p39

CALL iau_PV2P ( PV, P ) p40

CALL iau_PV2S ( PV, THETA, PHI, R, TD, PD, RD ) p41

CALL iau_PVDPV ( A, B, ADB ) p42

CALL iau_PVM ( PV, R, S ) p43

CALL iau_PVMPV ( A, B, AMB ) p44

CALL iau_PVPPV ( A, B, APB ) p45

CALL iau_PVU ( DT, PV, UPV ) p46

CALL iau_PVUP ( DT, PV, P ) p47

CALL iau_PVXPV ( A, B, AXB ) p48

CALL iau_PXP ( A, B, AXB ) p49

CALL iau_RM2V ( R, P ) p50

CALL iau_RV2M ( P, R ) p51

CALL iau_RX ( PHI, R ) p52

CALL iau_RXP ( R, P, RP ) p53

CALL iau_RXPV ( R, PV, RPV ) p54

CALL iau_RXR ( A, B, ATB ) p55

CALL iau_RY ( THETA, R ) p56

CALL iau_RZ ( PSI, R ) p57

CALL iau_S2C ( THETA, PHI, C ) p58

CALL iau_S2P ( THETA, PHI, R, P ) p59

CALL iau_S2PV ( THETA, PHI, R, TD, PD, RD, PV ) p60

CALL iau_S2XPV ( S1, S2, PV ) p61

CALL iau_SEPP ( A, B, S ) p62
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CALL iau_SEPS ( AL, AP, BL, BP, S ) p63

CALL iau_SXP ( S, P, SP ) p64

CALL iau_SXPV ( S, PV, SPV ) p65

CALL iau_TF2A ( S, IHOUR, IMIN, SEC, RAD, J ) p66

CALL iau_TF2D ( S, IHOUR, IMIN, SEC, DAYS, J ) p67

CALL iau_TR ( R, RT ) p68

CALL iau_TRXP ( R, P, TRP ) p69

CALL iau_TRXPV ( R, PV, TRPV ) p70

CALL iau_ZP ( P ) p71

CALL iau_ZPV ( PV ) p72

CALL iau_ZR ( R ) p73
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