
sofa_vml.lis 2020 September 9

 −−−−−−−−−−−−−−−−−−−−−−−−−−
 SOFA Vector/Matrix Library
 −−−−−−−−−−−−−−−−−−−−−−−−−−

PREFACE

The routines described here comprise the SOFA vector/matrix library.
Their general appearance and coding style conforms to conventions
agreed by the SOFA Board, and their functions, names and algorithms have
been ratified by the Board. Procedures for soliciting and agreeing
additions to the library are still evolving.

PROGRAMMING LANGUAGES

The SOFA routines are available in two programming languages at present:
Fortran 77 and ANSI C.

There is a one−to−one relationship between the two language versions.
The naming convention is such that a SOFA routine referred to
generically as "EXAMPL" exists as a Fortran subprogram iau_EXAMPL and a
C function iauExampl. The calls for the two versions are very similar,
with the same arguments in the same order. In a few cases, the C
equivalent of a Fortran SUBROUTINE subprogram uses a return value rather
than an argument.

GENERAL PRINCIPLES

The library consists mostly of routines which operate on ordinary
Cartesian vectors (x,y,z) and 3x3 rotation matrices. However, there is
also support for vectors which represent velocity as well as position
and vectors which represent rotation instead of position. The vectors
which represent both position and velocity may be considered still to
have dimensions (3), but to comprise elements each of which is two
numbers, representing the value itself and the time derivative. Thus:

* "Position" or "p" vectors (or just plain 3−vectors) have dimension
 (3) in Fortran and [3] in C.

* "Position/velocity" or "pv" vectors have dimensions (3,2) in Fortran
 and [2][3] in C.

* "Rotation" or "r" matrices have dimensions (3,3) in Fortran and [3][3]
 in C. When used for rotation, they are "orthogonal"; the inverse of
 such a matrix is equal to the transpose. Most of the routines in
 this library do not assume that r−matrices are necessarily orthogonal
 and in fact work on any 3x3 matrix.

* "Rotation" or "r" vectors have dimensions (3) in Fortran and [3] in C.
 Such vectors are a combination of the Euler axis and angle and are
 convertible to and from r−matrices. The direction is the axis of
 rotation and the magnitude is the angle of rotation, in radians.
 Because the amount of rotation can be scaled up and down simply by
 multiplying the vector by a scalar, r−vectors are useful for
 representing spins about an axis which is fixed.

* The above rules mean that in terms of memory address, the three
 velocity components of a pv−vector follow the three position
 components. Application code is permitted to exploit this and all
 other knowledge of the internal layouts: that x, y and z appear in
 that order and are in a right−handed Cartesian coordinate system etc.
 For example, the cp function (copy a p−vector) can be used to copy
 the velocity component of a pv−vector (indeed, this is how the
 CPV routine is coded).

* The routines provided do not completely fill the range of operations
 that link all the various vector and matrix options, but are confined
 to functions that are required by other parts of the SOFA software or
 which are likely to prove useful.

In addition to the vector/matrix routines, the library contains some
routines related to spherical angles, including conversions to and
from sexagesimal format.

Using the library requires knowledge of vector/matrix methods, spherical
trigonometry, and methods of attitude representation. These topics are
covered in many textbooks, including "Spacecraft Attitude Determination
and Control", James R. Wertz (ed.), Astrophysics and Space Science
Library, Vol. 73, D. Reidel Publishing Company, 1986.

OPERATIONS INVOLVING P−VECTORS AND R−MATRICES

 Initialize

 ZP zero p−vector
 ZR initialize r−matrix to null
 IR initialize r−matrix to identity

 Copy

 CP copy p−vector
 CR copy r−matrix

 Build rotations

 RX rotate r−matrix about x
 RY rotate r−matrix about y
 RZ rotate r−matrix about z

 Spherical/Cartesian conversions

 S2C spherical to unit vector
 C2S unit vector to spherical
 S2P spherical to p−vector
 P2S p−vector to spherical

 Operations on vectors

 PPP p−vector plus p−vector
 PMP p−vector minus p−vector
 PPSP p−vector plus scaled p−vector
 PDP inner (=scalar=dot) product of two p−vectors
 PXP outer (=vector=cross) product of two p−vectors
 PM modulus of p−vector
 PN normalize p−vector returning modulus
 SXP multiply p−vector by scalar

 Operations on matrices

 RXR r−matrix multiply
 TR transpose r−matrix

 Matrix−vector products

 RXP product of r−matrix and p−vector
 TRXP product of transpose of r−matrix and p−vector

 Separation and position−angle

 SEPP angular separation from p−vectors
 SEPS angular separation from spherical coordinates
 PAP position−angle from p−vectors
 PAS position−angle from spherical coordinates

 Rotation vectors

 RV2M r−vector to r−matrix
 RM2V r−matrix to r−vector

OPERATIONS INVOLVING PV−VECTORS

 Initialize

 ZPV zero pv−vector

 Copy/extend/extract

 CPV copy pv−vector
 P2PV append zero velocity to p−vector
 PV2P discard velocity component of pv−vector

 Spherical/Cartesian conversions

 S2PV spherical to pv−vector
 PV2S pv−vector to spherical

 Operations on pv−vectors

 PVPPV pv−vector plus pv−vector
 PVMPV pv−vector minus pv−vector
 PVDPV inner (=scalar=dot) product of two pv−vectors
 PVXPV outer (=vector=cross) product of two pv−vectors
 PVM modulus of pv−vector
 SXPV multiply pv−vector by scalar
 S2XPV multiply pv−vector by two scalars
 PVU update pv−vector
 PVUP update pv−vector discarding velocity

 Matrix−vector products

 RXPV product of r−matrix and pv−vector
 TRXPV product of transpose of r−matrix and pv−vector

OPERATIONS ON ANGLES

 Wrap

 ANP normalize radians to range 0 to 2pi
 ANPM normalize radians to range −pi to +pi

 To sexagesimal

 A2TF decompose radians into hours, minutes, seconds
 A2AF decompose radians into degrees, arcminutes, arcseconds
 D2TF decompose days into hours, minutes, seconds

 From sexagesimal

 AF2A degrees, arcminutes, arcseconds to radians
 TF2A hours, minutes, seconds to radians
 TF2D hours, minutes, seconds to days

CALLS: FORTRAN VERSION

 CALL iau_A2AF (NDP, ANGLE, SIGN, IDMSF)
 CALL iau_A2TF (NDP, ANGLE, SIGN, IHMSF)
 CALL iau_AF2A (S, IDEG, IAMIN, ASEC, RAD, J)
 D = iau_ANP (A)
 D = iau_ANPM (A)
 CALL iau_C2S (P, THETA, PHI)
 CALL iau_CP (P, C)
 CALL iau_CPV (PV, C)
 CALL iau_CR (R, C)
 CALL iau_D2TF (NDP, DAYS, SIGN, IHMSF)
 CALL iau_IR (R)
 CALL iau_P2PV (P, PV)
 CALL iau_P2S (P, THETA, PHI, R)
 CALL iau_PAP (A, B, THETA)
 CALL iau_PAS (AL, AP, BL, BP, THETA)
 CALL iau_PDP (A, B, ADB)
 CALL iau_PM (P, R)
 CALL iau_PMP (A, B, AMB)

 CALL iau_PN (P, R, U)
 CALL iau_PPP (A, B, APB)
 CALL iau_PPSP (A, S, B, APSB)
 CALL iau_PV2P (PV, P)
 CALL iau_PV2S (PV, THETA, PHI, R, TD, PD, RD)
 CALL iau_PVDPV (A, B, ADB)
 CALL iau_PVM (PV, R, S)
 CALL iau_PVMPV (A, B, AMB)
 CALL iau_PVPPV (A, B, APB)
 CALL iau_PVU (DT, PV, UPV)
 CALL iau_PVUP (DT, PV, P)
 CALL iau_PVXPV (A, B, AXB)
 CALL iau_PXP (A, B, AXB)
 CALL iau_RM2V (R, P)
 CALL iau_RV2M (P, R)
 CALL iau_RX (PHI, R)
 CALL iau_RXP (R, P, RP)
 CALL iau_RXPV (R, PV, RPV)
 CALL iau_RXR (A, B, ATB)
 CALL iau_RY (THETA, R)
 CALL iau_RZ (PSI, R)
 CALL iau_S2C (THETA, PHI, C)
 CALL iau_S2P (THETA, PHI, R, P)
 CALL iau_S2PV (THETA, PHI, R, TD, PD, RD, PV)
 CALL iau_S2XPV (S1, S2, PV)
 CALL iau_SEPP (A, B, S)
 CALL iau_SEPS (AL, AP, BL, BP, S)
 CALL iau_SXP (S, P, SP)
 CALL iau_SXPV (S, PV, SPV)
 CALL iau_TF2A (S, IHOUR, IMIN, SEC, RAD, J)
 CALL iau_TF2D (S, IHOUR, IMIN, SEC, DAYS, J)
 CALL iau_TR (R, RT)
 CALL iau_TRXP (R, P, TRP)
 CALL iau_TRXPV (R, PV, TRPV)
 CALL iau_ZP (P)
 CALL iau_ZPV (PV)
 CALL iau_ZR (R)

CALLS: C VERSION

 iauA2af (ndp, angle, &sign, idmsf);
 iauA2tf (ndp, angle, &sign, ihmsf);
 i = iauAf2a (s, ideg, iamin, asec, &rad);
 d = iauAnp (a);
 d = iauAnpm (a);
 iauC2s (p, &theta, &phi);
 iauCp (p, c);
 iauCpv (pv, c);
 iauCr (r, c);
 iauD2tf (ndp, days, &sign, ihmsf);
 iauIr (r);
 iauP2pv (p, pv);
 iauP2s (p, &theta, &phi, &r);
 d = iauPap (a, b);
 d = iauPas (al, ap, bl, bp);
 d = iauPdp (a, b);
 d = iauPm (p);
 iauPmp (a, b, amb);
 iauPn (p, &r, u);
 iauPpp (a, b, apb);
 iauPpsp (a, s, b, apsb);
 iauPv2p (pv, p);
 iauPv2s (pv, &theta, &phi, &r, &td, &pd, &rd);
 iauPvdpv (a, b, adb);
 iauPvm (pv, &r, &s);
 iauPvmpv (a, b, amb);
 iauPvppv (a, b, apb);
 iauPvu (dt, pv, upv);
 iauPvup (dt, pv, p);
 iauPvxpv (a, b, axb);
 iauPxp (a, b, axb);
 iauRm2v (r, p);

 iauRv2m (p, r);
 iauRx (phi, r);
 iauRxp (r, p, rp);
 iauRxpv (r, pv, rpv);
 iauRxr (a, b, atb);
 iauRy (theta, r);
 iauRz (psi, r);
 iauS2c (theta, phi, c);
 iauS2p (theta, phi, r, p);
 iauS2pv (theta, phi, r, td, pd, rd, pv);
 iauS2xpv (s1, s2, pv);
 d = iauSepp (a, b);
 d = iauSeps (al, ap, bl, bp);
 iauSxp (s, p, sp);
 iauSxpv (s, pv, spv);
 i = iauTf2a (s, ihour, imin, sec, &rad);
 i = iauTf2d (s, ihour, imin, sec, &days);
 iauTr (r, rt);
 iauTrxp (r, p, trp);
 iauTrxpv (r, pv, trpv);
 iauZp (p);
 iauZpv (pv);
 iauZr (r);

