THE

| SSSSS | | 000000 | | FFFFFFFFFFFFF |
| :---: | :---: | :---: | :---: | ---: | AAAAAAA

SOFTWARE
L I B R A R I S

International Astronomical Union

Division 1: Fundamental Astronomy
Commission 19: Rotation of the Earth

Standards Of Fundamental Astronomy Board

CONTENTS

```
--------
```

1) Introduction
2) The SOFA Astronomy Library
3) The SOFA Vector/Matrix Library
4) The individual routines

A1 The SOFA copyright notice
A2 Constants

A3
SOFA Review Board membership

SOFA stands for "Standards Of Fundamental Astronomy". The SOFA software libraries are a collection of subprograms, in sourcecode form, which implement official IAU algorithms for fundamentalastronomy computations. The subprograms at present comprise 131 "astronomy" routines supported by 55 "vector/matrix" routines, available in both Fortran77 and C implementations.

THE SOFA INITIATIVE

SOFA is an IAU Service which operates under Division 1 (Fundamental Astronomy) and reports through Commission 19 (Rotation of the Earth).

The IAU set up the SOFA initiative at the 1994 General Assembly, to promulgate an authoritative set of fundamental-astronomy constants and algorithms. At the subsequent General Assembly, in 1997, the appointment of a SOFA Review Board and the selection of a site for the SOFA Center (the outlet for SOFA products) were announced.

The SOFA initiative was originally proposed by the IAU Working Group on Astronomical Standards (WGAS), under the chairmanship of Toshio Fukushima. The proposal was for "...new arrangements to establish and maintain an accessible and authoritative set of constants, algorithms and procedures that implement standard models used in fundamental astronomy". The SOFA Software Libraries implement the "algorithms" part of the SOFA initiative. They were developed under the supervision of an international panel called the SOFA Review Board. The current membership of this panel is listed in an appendix.

A feature of the original SOFA software proposals was that the products would be self-contained and not depend on other software. This includes basic documentation, which, like the present file, will mostly be plain ASCII text. It should also be noted that there is no assumption that the software will be used on a particular computer and Operating System. Although OS-related facilities may be present (Unix make files for instance, use by the SOFA Center of automatic code management systems, HTML versions of some documentation), the routines themselves will be visible as individual text files and will run on a variety of platforms.

ALGORITHMS

The SOFA Review Board's initial goal has been to create a set of callable subprograms. Whether "subroutines" or "functions", they are all referred to simply as "routines". They are designed for use by software developers wishing to write complete applications; no runnable, free-standing applications are included in SOFA's present plans.

The algorithms are drawn from a variety of sources. Because most of the routines so far developed have either been standard "text-book" operations or implement well-documented standard algorithms, it has not been necessary to invite the whole community to submit algorithms, though consultation with authorities has occurred where necessary. It should also be noted that consistency with the conventions published by the International Earth Rotation Service was a stipulation in the original SOFA proposals, further constraining the software designs. This state of affairs will continue to exist for some time, as there is a large backlog of agreed extensions to work on. However, in the future the Board may decide to call for proposals, and is in the meantime willing to look into any suggestions that are received by the SOFA Center.

The routines currently available are listed in the next two chapters of this document.

The "astronomy" library comprises 131 routines (plus one obsolete Fortran routine that now appears under a revised name). The areas addressed include calendars, time scales, ephemerides, precessionnutation, star space-motion, star catalog transformations and geodetic/geocentric transformations.

The "vector-matrix" library, comprising 55 routines, contains a collection of simple tools for manipulating the vectors, matrices and angles used by the astronomy routines.

There is no explicit commitment by SOFA to support historical models, though as time goes on a legacy of superseded models will naturally accumulate. There is, for example, no support of B1950/FK4 star coordinates, or pre-1976 precession models, though these capabilities could be added were there significant demand.

Though the SOFA software libraries are rather limited in scope, and are likely to remain so for a considerable time, they do offer distinct advantages to prospective users. In particular, the routines are:

* authoritative: they are IAU-backed and have been constructed with great care;
* practical: they are straightforward to use in spite of being precise and rigorous (to some stated degree);
* accessible and supported: they are downloadable from an easy-tofind place, they are in an integrated and consistent form, they come with adequate internal documentation, and help for users is available.

VERSIONS

Once it has been published, an issue is never revised or updated, and remains accessible indefinitely. Subsequent issues may, however, include corrected versions under the original routine name and filenames. However, where a different model is introduced, it will have a different name.

The issues will be referred to by the date when they were announced. The frequency of re-issue will be decided by the Board, taking into account the importance of the changes and the impact on the user community.

DOCUMENTATION

At present there is little free-standing documentation about individual routines. However, each routine has preamble comments which specify in detail what the routine does and how it is used.

The file sofa_pn.pdf describes the SOFA tools for precession-nutation and other aspects of Earth attitude and includes example code and (see the appendix) diagrams showing the interrelationships between the routines supporting the latest (IAU 2006/2000A) models.

PROGRAMMING LANGUAGES AND STANDARDS

The SOFA routines are available in two programming languages at present: Fortran77 and ANSI C. Related software in other languages is under consideration.

The Fortran code conforms to ANSI X3.9-1978 in all but two minor respects: each has an IMPLICIT NONE declaration, and its name has a prefix of "iau_" and may be longer than 6 characters. A global edit to erase both of these will produce ANSI-compliant code with no change in its function.

Coding style, and restrictions on the range of language features, have been much debated by the Board, and the results comply with the majority view. There is (at present) no document that defines the standards, but the code itself offers a wide range of examples of what is acceptable.

The Fortran routines contain explicit numerical constants (the INCLUDE statement is not part of ANSI Fortran77). These are drawn from the file consts.lis, which is listed in an appendix. Constants for the SOFA/C functions are defined in a header file sofam.h.

The naming convention is such that a SOFA routine referred to generically as "EXAMPL" exists as a Fortran subprogram iau_EXAMPL and a C function iauExampl. The calls for the two versions are very similar, with the same arguments in the same order. In a few cases, the C equivalent of a Fortran SUBROUTINE subprogram uses a return value rather than an argument.

Each language version includes a "testbed" main-program that can be used to verify that the SOFA routines have been correctly compiled on the end user's system. The Fortran and C versions are called t_sofa_f.for and t_sofa_c.c respectively. The testbeds execute every SOFA routine and check that the results are within expected accuracy margins. It is not possible to guarantee that all platforms will meet the rather stringent criteria that have been used, and an occasional warning message may be encountered on some systems.

COPYRIGHT ISSUES

Copyright for all of the SOFA software and documentation is owned by the IAU SOFA Review Board. The Software is made available free of charge for all classes of user, including commercial. However, there are strict rules designed to avoid unauthorized variants coming into circulation. It is permissible to distribute derived works and other modifications, but they must be clearly marked to avoid confusion with the SOFA originals.

Further details are included in the block of comments which concludes every routine. The text is also set out in an appendix to the present document.

ACCURACY

The SOFA policy is to organize the calculations so that the machine accuracy is fully exploited. The gap between the precision of the underlying model or theory and the computational resolution has to be kept as large as possible, hopefully leaving several orders of magnitude of headroom.

The SOFA routines in some cases involve design compromises between rigor and ease of use (and also speed, though nowadays this is seldom a major concern).

ACKNOWLEDGEMENTS

The Board is indebted to a number of contributors, who are acknowledged in the preamble comments of the routines concerned.

The Board's effort is provided by the members' individual institutes.
Resources for operating the SOFA Center are provided by Her Majesty's Nautical Almanac Office, operated by the United Kingdom Hydrographic Office.

```
SOFA Astronomy Library
```


PREFACE

The routines described here comprise the SOFA astronomy library. Their general appearance and coding style conforms to conventions agreed by the SOFA Review Board, and their functions, names and algorithms have been ratified by the Board. Procedures for soliciting and agreeing additions to the library are still evolving.

PROGRAMMING LANGUAGES

The SOFA routines are available in two programming languages at present: Fortran 77 and ANSI C.

Except for a single obsolete Fortran routine, which has no C equivalent, there is a one-to-one relationship between the two language versions. The naming convention is such that a SOFA routine referred to generically as "EXAMPL" exists as a Fortran subprogram iau_EXAMPL and a C function iauExampl. The calls for the two versions are very similar, with the same arguments in the same order. In a few cases, the C equivalent of a Fortran SUBROUTINE subprogram uses a return value rather than an argument.

GENERAL PRINCIPLES

The principal function of the SOFA Astronomy Library is to provide definitive algorithms. A secondary function is to provide software suitable for convenient direct use by writers of astronomical applications.

The astronomy routines call on the SOFA vector/matrix library routines, which are separately listed.

The routines are designed to exploit the full floating-point accuracy of the machines on which they run, and not to rely on compiler optimizations. Within these constraints, the intention is that the code corresponds to the published formulation (if any).

Dates are always Julian Dates (except in calendar conversion routines) and are expressed as two double precision numbers which sum to the required value.

A distinction is made between routines that implement IAU-approved models and those that use those models to create other results. The former are referred to as "canonical models" in the preamble comments; the latter are described as "support routines".

Using the library requires knowledge of positional astronomy and time-scales. These topics are covered in "Explanatory Supplement to the Astronomical Almanac", P. Kenneth Seidelmann (ed.), University Science Books, 1992. Recent developments are documented in the journals, and references to the relevant papers are given in the SOFA code as required. The IERS Conventions are also an essential reference. The routines concerned with Earth attitude (precession-nutation etc.) are described in the SOFA document sofa_pn.pdf.

ROUTINES

Calendars
CAL2JD Gregorian calendar to Julian Day number
EPB Julian Date to Besselian Epoch
EPB2JD Besselian Epoch to Julian Date
EPJ Julian Date to Julian Epoch

EPJ2JD Julian Epoch to Julian Date
JD2CAL Julian Date to Gregorian year, month, day, fraction
JDCALF Julian Date to Gregorian date for formatted output
Time scales

D2DTF	format 2-part JD for output	
DAT	Delta (AT) (=TAI-UTC) for a given UTC date	
DTDB	TDB-TT	di
DTF2D	encode time and date fields into 2-part JD	
TAITT	TAI to TT	
TAIUT1	TAI to UT1	
TAIUTC	TAI to UTC	
TCBTDB	TCB to TDB	
TCGTT	TCG to TT	
TDBTCB	TDB to TCB	
TDBTT	TDB to TT	
TTTAI	TT to TAI	
TTTCG	TT to TCG	
TTTDB	TT to TDB	
TTUT1	TT to UT1	
UT1TAI	UT1 to TAI	
UT1TT	UT1 to TT	
UT1UTC	UT1 to UTC	
UTCTAI	UTC to TAI	
UTCUT1	UTC to UT1	

Earth rotation angle and sidereal time

```
EE00 equation of the equinoxes, IAU 2000
EEOOA equation of the equinoxes, IAU 2000A
EEOOB equation of the equinoxes, IAU 2000B
EE06A equation of the equinoxes, IAU 2006/2000A
EECTOO equation of the equinoxes complementary terms, IAU 2000
EQEQ94 equation of the equinoxes, IAU 1994
ERA00 Earth rotation angle, IAU 2000
GMST00 Greenwich mean sidereal time, IAU 2000
GMST06 Greenwich mean sidereal time, IAU 2006
GMST82 Greenwich mean sidereal time, IAU 1982
GSTOOA Greenwich apparent sidereal time, IAU 2000A
GSTOOB Greenwich apparent sidereal time, IAU 2000B
GST06 Greenwich apparent ST, IAU 2006, given NPB matrix
GST06A Greenwich apparent sidereal time, IAU 2006/2000A
GST94 Greenwich apparent sidereal time, IAU 1994
Ephemerides (limited precision)
EPVOO Earth position and velocity
PLAN94 major-planet position and velocity
```

Precession, nutation, polar motion
BIO frame bias components, IAU 2000
BPOO frame bias and precession matrices, IAU 2000
BP06 frame bias and precession matrices, IAU 2006
BPN2XY extract CIP X,Y coordinates from NPB matrix
C2I00A celestial-to-intermediate matrix, IAU 2000A
C2I00B celestial-to-intermediate matrix, IAU 2000B
C2I06A celestial-to-intermediate matrix, IAU 2006/2000A
C2IBPN celestial-to-intermediate matrix, given NPB matrix, IAU 2000
C2IXY celestial-to-intermediate matrix, given X,Y, IAU 2000
C2IXYS celestial-to-intermediate matrix, given X, Y and s
C2T00A celestial-to-terrestrial matrix, IAU 2000A
C2T00B celestial-to-terrestrial matrix, IAU 2000B
C2T06A celestial-to-terrestrial matrix, IAU 2006/2000A
C2TCIO form CIO-based celestial-to-terrestrial matrix
C2TEQX form equinox-based celestial-to-terrestrial matrix
C2TPE celestial-to-terrestrial matrix given nutation, IAU 2000
C2TXY celestial-to-terrestrial matrix given CIP, IAU 2000
EOO6A equation of the origins, IAU 2006/2000A
EORS equation of the origins, given $N P B$ matrix and s
FW2M Fukushima-Williams angles to r-matrix
FW2XY Fukushima-Williams angles to X,Y

```
    NUMOOA nutation matrix, IAU 2000A
    NUMOOB nutation matrix, IAU 2000B
    NUM06A nutation matrix, IAU 2006/2000A
    NUMAT form nutation matrix
    NUT00A nutation, IAU 2000A
    NUTOOB nutation, IAU 2000B
    NUT06A nutation, IAU 2006/2000A
    NUT80 nutation, IAU 1980
    NUTM80 nutation matrix, IAU 1980
    OBL06 mean obliquity, IAU 2006
    OBL80 mean obliquity, IAU 1980
    PB06
    PFW06
    PMAT00
    PMAT0 6
    PMAT76
    PNOO
    NNOO
    PNOOB bias/precession/nutation, IAU 2000B
    PN06 bias/precession/nutation results, IAU 2006
    PN06A bias/precession/nutation results, IAU 2006/2000A
    PNMOOA classical NPB matrix, IAU 2000A
    PNMOOB classical NPB matrix, IAU 2000B
    PNM06A classical NPB matrix, IAU 2006/2000A
    PNM80 precession/nutation matrix, IAU 1976/1980
    P06E
    POMO
    PR00
    PREC76
    SOO
    SOOA
    SOOB
    S06
    S06A the CIO locator s, given X,Y, IAU
    SP00 the TIO locator s', IERS 2003
    XY06 CIP, IAU 2006/2000A, from series
    XYSOOA CIP and s, IAU 2000A
    XYSOOB CIP and s, IAU 2000B
    XYS06A CIP and s, IAU 2006/2000A
```

Fundamental arguments for nutation etc.
FAD03 mean elongation of the Moon from the Sun
FAE03 mean longitude of Earth
FAF03 mean argument of the latitude of the Moon
FAJU03 mean longitude of Jupiter
FAL03 mean anomaly of the Moon
FALP03 mean anomaly of the Sun
FAMA03 mean longitude of Mars
FAME03 mean longitude of Mercury
FANE03 mean longitude of Neptune
FAOMO3 mean longitude of the Moon's ascending node
FAPA03 general accumulated precession in longitude
FASA03 mean longitude of Saturn
FAUR03 mean longitude of Uranus
FAVE03 mean longitude of Venus
Star space motion
PVSTAR space motion pv-vector to star catalog data
STARPV star catalog data to space motion pv-vector
Star catalog conversions
FK52H transform FK5 star data into the Hipparcos system
FK5HIP FK5 to Hipparcos rotation and spin
FK5HZ FK5 to Hipparcos assuming zero Hipparcos proper motion
H2FK5 transform Hipparcos star data into the FK5 system
HFK5Z Hipparcos to FK5 assuming zero Hipparcos proper motion
STARPM proper motion between two epochs

EFORM	a,f for a nominated Earth reference ellipsoid
GC2GD	geocentric to geodetic for a nominated ellipsoid
GC2GDE	geocentric to geodetic given ellipsoid a,f
GD2GC	geodetic to geocentric for a nominated ellipsoid
GD2GCE	geodetic to geocentric given ellipsoid a,f

Obsolete
C2TCEO former name of C2TCIO

CALLS: FORTRAN VERSION

CALL	iau_BI00	(DPSIBI, DEPSBI, DRA)
CALL	iau_BP00	(DATE1, DATE2, RB, RP, RBP)
CALL	iau_BP06	(DATE1, DATE2, RB, RP, RBP)
CALL	iau_BPN2XY	(RBPN, X, Y)
CALL	iau_C2I00A	(DATE1, DATE2, RC2I)
CALL	iau_C2I00B	(DATE1, DATE2, RC2I)
CALL	iau_C2I06A	(DATE1, DATE2, RC2I)
CALL	iau_C2IBPN	(DATE1, DATE2, RBPN, RC2I)
CALL	iau_C2IXY	(DATE1, DATE2, X, Y, RC2I)
CALL	iau_C2IXYS	(X, Y, S, RC2I)
CALL	iau_C2T00A	(TTA, TTB, UTA, UTB, XP, YP, RC2T)
CALL	iau_C2T00B	(TTA, TTB, UTA, UTB, XP, YP, RC2T)
CALL	iau_C2T06A	(TTA, TTB, UTA, UTB, XP, YP, RC2T)
CALL	iau_C2TCEO	(RC2I, ERA, RPOM, RC2T)
CALL	iau_C2TCIO	(RC2I, ERA, RPOM, RC2T)
CALL	iau_C2TEQX	(RBPN, GST, RPOM, RC2T)
CALL	iau_C2TPE	(TTA, TTB, UTA, UTB, DPSI, DEPS, XP, YP, RC2T)
CALL	iau_C2TXY	(TTA, TTB, UTA, UTB, X, Y, XP, YP, RC2T)
CALL	iau_CAL2JD	(IY, IM, ID, DJM0, DJM, J)
CALL	iau_D2DTF	(SCALE, NDP, D1, D2, IY, IM, ID, IHMSF, J)
CALL	iau_DAT	(IY, IM, ID, FD, DELTAT, J)
D =	iau_DTDB	(DATE1, DATE2, UT, ELONG, U, V)
CALL	iau_DTF2D	(SCALE, IY, IM, ID, IHR, IMN, SEC, D1, D2, J
D =	iau_EE00	(DATE1, DATE2, EPSA, DPSI)
D $=$	iau_EE00A	(DATE1, DATE2)
D $=$	iau_EE00B	(DATE1, DATE2)
D $=$	iau_EE06A	(DATE1, DATE2)
D =	iau_EECT00	(DATE1, DATE2)
CALL	iau_EFORM	(N, A, F, J)
D =	iau_EO06A	(DATE1, DATE2)
D $=$	iau_EORS	(RNPB, S)
D $=$	iau_EPB	(DJ1, DJ2)
CALL	iau_EPB2JD	(EPB, DJM0, DJM)
D =	iau_EPJ	(DJ1, DJ2)
CALL	iau_EPJ2JD	(EPJ, DJM0, DJM)
CALL	iau_EPV00	(DJ1, DJ2, PVH, PVB, J)
D =	iau_EQEQ94	(DATE1, DATE2)
D $=$	iau_ERA00	(DJ1, DJ2)
D $=$	iau_FAD03	(T)
D $=$	iau_FAE03	(T)
D $=$	iau_FAF03	(T)
D $=$	iau_FAJU03	(T)
D $=$	iau_FAL03	(T)
D =	iau_FALP03	(T)
D =	iau_FAMA03	(T)
D $=$	iau_FAME03	(T)
D $=$	iau_FANE03	(T)
D $=$	iau_FAOM03	(T)
D $=$	iau_FAPA03	(T)
D $=$	iau_FASA03	(T)
D $=$	iau_FAUR03	(T)
D $=$	iau_FAVE03	(T)
CALL	iau_FK52H	(R5, D5, DR5, DD5, PX5, RV5,
		RH, DH, DRH, DDH, PXH, RVH)
CALL	iau_FK5HIP	(R5H, S5H)
CALL	iau_FK5HZ	(R5, D5, DATE1, DATE2, RH, DH)
CALL	iau_FW2M	(GAMB, PHIB, PSI, EPS, R)
CALL	iau_FW2XY	(GAMB, PHIB, PSI, EPS, X, Y)
CALL	iau_GC2GD	(N, XYZ, ELONG, PHI, HEIGHT, J)

```
CALL iau_GC2GDE ( A, F, XYZ, ELONG, PHI, HEIGHT, J )
CALL iau_GD2GC ( N, ELONG, PHI, HEIGHT, XYZ, J )
CALL iau_GD2GCE ( A, F, ELONG, PHI, HEIGHT, XYZ, J )
D = iau_GMST00 ( UTA, UTB, TTA, TTB )
D = iau_GMST06 ( UTA, UTB, TTA, TTB )
D = iau_GMST82 ( UTA, UTB )
D = iau_GST00A ( UTA, UTB, TTA, TTB )
D = iau_GSTOOB ( UTA, UTB )
D = iau_GST06 ( UTA, UTB, TTA, TTB, RNPB )
D = iau_GST06A ( UTA, UTB, TTA, TTB )
D = iau_GST94 ( UTA, UTB )
CALL iau_H2FK5 ( RH, DH, DRH, DDH, PXH, RVH,
:
CALL iau_HFK5Z
CALL iau_JD2CAL
CALL iau_JDCALF
CALL iau_NUMOOA
CALL iau_NUMOOB
CALL iau_NUM06A
CALL iau_NUMAT ( EPSA, DPSI, DEPS, RMATN
CALL iau_NUTOOA ( DATE1, DATE2, DPSI, DEPS )
CALL iau_NUTOOB ( DATE1, DATE2, DPSI, DEPS )
CALL iau_NUT06A ( DATE1, DATE2, DPSI, DEPS )
CALL iau_NUT80 ( DATE1, DATE2, DPSI, DEPS )
CALL iau_NUTM80 ( DATE1, DATE2, RMATN )
D = iau_OBL06 ( DATE1, DATE2 )
D = iau_OBL80 ( DATE1, DATE2 )
CALL iau_PB06 ( DATE1, DATE2, BZETA, BZ, BTHETA )
CALL iau_PFW06 ( DATE1, DATE2, GAMB, PHIB, PSIB, EPSA )
CALL iau_PLAN94 ( DATE1, DATE2, NP, PV, J )
CALL iau_PMAT00 ( DATE1, DATE2, RBP )
CALL iau_PMAT06 ( DATE1, DATE2, RBP )
CALL iau_PMAT76 ( DATE1, DATE2, RMATP )
CALL iau_PN00 ( DATE1, DATE2, DPSI, DEPS,
EPSA, RB, RP, RBP, RN, RBPN )
CALL iau_PNOOA
:
CALL iau_PNOOB
    DSI, DEPS,
DPSI, DEPS, EPSA, RB, RP, RBP, RN, RBPN
CALL iau_PNO6
:
CALL iau_PNO6A
CALL iau_PNMOOA
CALL iau_PNMOOB
CALL iau_PNMO6A
CALL iau_PNM80
CALL iau_P06E ( DATE1, DATE2,
:
CALL iau_POMOO ( XP, YP, SP, RPOM )
CALL iau_PR00 ( DATE1, DATE2, DPSIPR, DEPSPR )
CALL iau_PREC76 ( EP01, EP02, EP11, EP12, ZETA, Z, THETA )
CALL iau_PVSTAR ( PV, RA, DEC, PMR, PMD, PX, RV, J )
D = iau_S00 ( DATE1, DATE2, X, Y )
D = iau_S00A ( DATE1, DATE2 )
D = iau_S00B ( DATE1, DATE2 )
D = iau_S06 ( DATE1, DATE2, X, Y )
D = iau_S06A ( DATE1, DATE2 )
D = iau_SP00 ( DATE1, DATE2 )
CALL iau_STARPM ( RA1, DEC1, PMR1, PMD1, PX1, RV1,
    EP1A, EP1B, EP2A, EP2B,
    RA2, DEC2, PMR2, PMD2, PX2, RV2, J )
CALL iau_STARPV ( RA, DEC, PMR, PMD, PX, RV, PV, J )
CALL iau__TAITT ( TAI1, TAI2, TT1, TT2, J )
CALL iau_TAIUT1 ( TAI1, TAI2, DTA, UT11, UT12, J )
CALL iau_TAIUTC ( TAI1, TAI2, UTC1, UTC2, J )
CALL iau_TCBTDB ( TCB1, TCB2, TDB1, TDB2, J )
CALL iau_TCGTT ( TCG1, TCG2, TT1, TT2, J )
CALL iau_TDBTCB ( TDB1, TDB2, TCB1, TCB2, J )
CALL iau_TDBTT ( TDB1, TDB2, DTR, TT1, TT2, J )
CALL iau_TTTAI ( TT1, TT2, TAI1, TAI2, J )
CALL iau_TTTCG ( TT1, TT2, TCG1, TCG2, J )
```


CALLS: C VERSION

```
    iauBi00 ( &dpsibi, &depsbi, &dra );
    iauBp00 ( date1, date2, rb, rp, rbp );
    iauBp06 ( date1, date2, rb, rp, rbp );
    iauBpn2xy ( rbpn, &x, &y );
    iauC2i00a ( date1, date2, rc2i );
    iauC2i00b ( date1, date2, rc2i );
    iauC2i06a ( date1, date2, rc2i );
    iauC2ibpn ( date1, date2, rbpn, rc2i );
    iauC2ixy ( date1, date2, x, y, rc2i );
    iauC2ixys ( x, y, s, rc2i );
    iauC2t00a ( tta, ttb, uta, utb, xp, yp, rc2t );
    iauC2t00b ( tta, ttb, uta, utb, xp, yp, rc2t );
    iauC2t06a ( tta, ttb, uta, utb, xp, yp, rc2t );
    iauC2tcio ( rc2i, era, rpom, rc2t );
    iauC2teqx ( rbpn, gst, rpom, rc2t );
    iauC2tpe ( tta, ttb, uta, utb, dpsi, deps, xp, yp, rc2t );
    iauC2txy ( tta, ttb, uta, utb, x, y, xp, yp, rc2t );
i = iauCal2jd ( iy, im, id, &djm0, &djm );
i = iauD2dtf ( scale, ndp, d1, d2, &iy, &im, &id, ihmsf );
= iauDat ( iy, im, id, fd, &deltat );
= iauDtdb ( date1, date2, ut, elong, u, v );
= iauDtf2d ( scale, iy, im, id, ihr, imn, sec, &d1, &d2 );
d = iauEe00 ( date1, date2, epsa, dpsi );
d = iauEe00a ( date1, date2 );
d = iauEe00b ( date1, date2 );
d = iauEe06 ( date1, date2 );
d = iauEect00 ( date1, date2 );
i = iauEform ( n, &a, &f );
d = iauEo06 ( date1, date2 );
d = iauEors ( rnpb, s );
d = iauEpb ( dj1, dj2 );
iauEpb2jd ( epb, &djm0, &djm );
d = iauEpj ( dj1, dj2 );
iauEpj2jd ( epj, &djm0, &djm );
i = iauEpv00 ( dj1, dj2, pvh, pvb );
d = iauEqeq94 ( date1, date2 );
d = iauEra00 ( dj1, dj2 );
d = iauFad03 ( t );
d = iauFae03 ( t );
d = iauFaf03 ( t );
d = iauFaju03 ( t );
d = iauFal03 ( t );
d = iauFalp03 ( t );
d = iauFama03 ( t );
d = iauFame03 ( t );
d = iauFane03 ( t );
d = iauFaom03 ( t );
d = iauFapa03 ( t );
d = iauFasa03 ( t );
d = iauFaur03 ( t );
d = iauFave03 ( t );
    iauFk52h ( r5, d5, dr5, dd5, px5, rv5,
    &rh, &dh, &drh, &ddh, &pxh, &rvh );
    iauFk5hip ( r5h, s5h );
    iauFk5hz ( r5, d5, date1, date2, &rh, &dh );
    iauFw2m ( gamb, phib, psi, eps, r );
    iauFw2xy ( gamb, phib, psi, eps, &x, &y );
```

```
i = iauGc2gd ( n, xyz, &elong, &phi, &height );
i = iauGc2gde ( a, f, xyz, &elong, &phi, &height );
i = iauGd2gc ( n, elong, phi, height, xyz );
i = iauGd2gce ( a, f, elong, phi, height, xyz );
d = iauGmst00 ( uta, utb, tta, ttb );
d = iauGmst06 ( uta, utb, tta, ttb );
d = iauGmst82 ( uta, utb );
d = iauGst00a ( uta, utb, tta, ttb );
d = iauGst00b ( uta, utb );
d = iauGst06 ( uta, utb, tta, ttb, rnpb );
d = iauGst06a ( uta, utb, tta, ttb );
d = iauGst94 ( uta, utb );
    iauH2fk5 ( rh, dh, drh, ddh, pxh, rvh,
    &r5, &d5, &dr5, &dd5, &px5, &rv5 );
    iauHfk5z ( rh, dh, date1, date2,
    &r5, &d5, &dr5, &dd5 );
i = iauJd2cal ( dj1, dj2, &iy, &im, &id, &fd );
i = iauJdcalf ( ndp, dj1, dj2, iymdf );
    iauNum00a ( date1, date2, rmatn );
    iauNum00b ( date1, date2, rmatn );
    iauNum06a ( date1, date2, rmatn );
    iauNumat ( epsa, dpsi, deps, rmatn );
    iauNut00a ( date1, date2, &dpsi, &deps );
    iauNut00b ( date1, date2, &dpsi, &deps );
    iauNut06a ( date1, date2, &dpsi, &deps );
    iauNut80 ( date1, date2, &dpsi, &deps );
    iauNutm80 ( date1, date2, rmatn );
d = iauObl06 ( date1, date2 );
d = iauObl80 ( date1, date2 );
    iauPb06 ( date1, date2, &bzeta, &bz, &btheta );
    iauPfw06 ( date1, date2, &gamb, &phib, &psib, &epsa );
i = iauPlan94 ( date1, date2, np, pv );
    iauPmat00 ( date1, date2, rbp );
    iauPmat06 ( date1, date2, rbp );
    iauPmat76 ( date1, date2, rmatp );
    iauPn00 ( date1, date2, dpsi, deps,
    &epsa, rb, rp, rbp, rn, rbpn );
    iauPn00a ( date1, date2,
        &dpsi, &deps, &epsa, rb, rp, rbp, rn, rbpn );
    iauPn00b ( date1, date2,
    &dpsi, &deps, &epsa, rb, rp, rbp, rn, rbpn );
    iauPn06 ( date1, date2, dpsi, deps,
    &epsa, rb, rp, rbp, rn, rbpn );
    iauPn06a ( date1, date2,
    &dpsi, &deps, &epsa, rb, rp, rbp, rn, rbpn );
    iauPnm00a ( date1, date2, rbpn );
    iauPnm00b ( date1, date2, rbpn );
    iauPnm06a ( date1, date2, rnpb );
    iauPnm80 ( date1, date2, rmatpn );
    iauP06e ( date1, date2,
        &eps0, &psia, &oma, &bpa, &bqa, &pia, &bpia,
        &epsa, &chia, &za, &zetaa, &thetaa, &pa,
        &gam, &phi, &psi );
    iauPom00 ( xp, yp, sp, rpom );
    iauPr00 ( date1, date2, &dpsipr, &depspr );
    iauPrec76 ( ep01, ep02, ep11, ep12, &zeta, &z, &theta );
i = iauPvstar ( pv, &ra, &dec, &pmr, &pmd, &px, &rv );
d = iauS00 ( date1, date2, x, y );
d = iauS00a ( date1, date2 );
d = iauS00b ( date1, date2 );
d = iauS06 ( date1, date2, x, y );
d = iauS06a ( date1, date2 );
d = iauSp00 ( date1, date2 );
i = iauStarpm ( ra1, dec1, pmr1, pmd1, px1, rv1,
    ep1a, ep1b, ep2a, ep2b,
    &ra2, &dec2, &pmr2, &pmd2, &px2, &rv2 );
i = iauStarpv ( ra, dec, pmr, pmd, px, rv, pv );
i = iauTaitt ( tai1, tai2, &tt1, &tt2 );
i = iauTaiut1 ( tai1, tai2, dta, &ut11, &ut12 );
i = iauTaiutc ( tai1, tai2, &utc1, &utc2 );
i = iauTcbtdb ( tcb1, tcb2, &tdb1, &tdb2 );
i = iauTcgtt ( tcg1, tcg2, &tt1, &tt2 );
i = iauTdbtcb ( tdb1, tdb2, &tcb1, &tcb2 );
```

```
i = iauTdbtt ( tdb1, tdb2, dtr, &tt1, &tt2 );
i = iauTttai ( tt1, tt2, &tai1, &tai2 );
i = iauTttcg ( tt1, tt2, &tcg1, &tcg2 )
i = iauTttdb ( tt1, tt2, dtr, &tdb1, &tdb2 );
i = iauTtut1 ( tt1, tt2, dt, &ut11, &ut12 );
i = iauUt1tai ( ut11, ut12, &tai1, &tai2 );
i = iauUt1tt ( ut11, ut12, dt, &tt1, &tt2 );
i = iauUt1utc ( ut11, ut12, dut, &utc1, &utc2 );
i = iauUtctai ( utc1, utc2, dta, &tai1, &tai2 );
i = iauUtcut1 ( utc1, utc2, dut, &ut11, &ut12 );
    iauXy06 ( date1, date2, &x, &y );
    iauXys00a ( date1, date2, &x, &y, &S );
    iauXys00b ( date1, date2, &x, &y, &s );
    iauXys06a ( date1, date2, &x, &y, &S );
```

```
SOFA Vector/Matrix Library
```


PREFACE

The routines described here comprise the SOFA vector/matrix library. Their general appearance and coding style conforms to conventions agreed by the SOFA Review Board, and their functions, names and algorithms have been ratified by the Board. Procedures for soliciting and agreeing additions to the library are still evolving.

PROGRAMMING LANGUAGES

The SOFA routines are available in two programming languages at present: Fortran 77 and ANSI C.

There is a one-to-one relationship between the two language versions. The naming convention is such that a SOFA routine referred to generically as "EXAMPL" exists as a Fortran subprogram iau_EXAMPL and a C function iauExampl. The calls for the two versions are very similar, with the same arguments in the same order. In a few cases, the C equivalent of a Fortran SUBROUTINE subprogram uses a return value rather than an argument.

GENERAL PRINCIPLES

The library consists mostly of routines which operate on ordinary Cartesian vectors (x, y, z) and $3 x 3$ rotation matrices. However, there is also support for vectors which represent velocity as well as position and vectors which represent rotation instead of position. The vectors which represent both position and velocity may be considered still to have dimensions (3), but to comprise elements each of which is two numbers, representing the value itself and the time derivative. Thus:

* "Position" or "p" vectors (or just plain 3-vectors) have dimension (3) in Fortran and [3] in C.
* "Position/velocity" or "pv" vectors have dimensions $(3,2)$ in Fortran and [2][3] in C.
* "Rotation" or "r" matrices have dimensions (3,3) in Fortran and [3] [3] in C. When used for rotation, they are "orthogonal"; the inverse of such a matrix is equal to the transpose. Most of the routines in this library do not assume that r-matrices are necessarily orthogonal and in fact work on any $3 x 3$ matrix.
* "Rotation" or "r" vectors have dimensions (3) in Fortran and [3] in C. Such vectors are a combination of the Euler axis and angle and are convertible to and from r-matrices. The direction is the axis of rotation and the magnitude is the angle of rotation, in radians. Because the amount of rotation can be scaled up and down simply by multiplying the vector by a scalar, r-vectors are useful for representing spins about an axis which is fixed.
* The above rules mean that in terms of memory address, the three velocity components of a pv-vector follow the three position components. Application code is permitted to exploit this and all other knowledge of the internal layouts: that x, y and z appear in that order and are in a right-handed Cartesian coordinate system etc. For example, the cp function (copy a p-vector) can be used to copy the velocity component of a pv-vector (indeed, this is how the CPV routine is coded).
* The routines provided do not completely fill the range of operations that link all the various vector and matrix options, but are confined to functions that are required by other parts of the SOFA software or which are likely to prove useful.

In addition to the vector/matrix routines, the library contains some routines related to spherical angles, including conversions to and from sexagesimal format.

Using the library requires knowledge of vector/matrix methods, spherical trigonometry, and methods of attitude representation. These topics are covered in many textbooks, including "Spacecraft Attitude Determination and Control", James R. Wertz (ed.), Astrophysics and Space Science Library, Vol. 73, D. Reidel Publishing Company, 1986.

OPERATIONS INVOLVING P-VECTORS AND R-MATRICES
Initialize
ZP zero p-vector
ZR initialize r-matrix to null
IR initialize r-matrix to identity
Copy/extend/extract

CP	copy
CR -vector	
copy r-matrix	

Build rotations
RX rotate r-matrix about x
RY rotate r-matrix about y
RZ rotate r-matrix about z

Spherical/Cartesian conversions
S2C spherical to unit vector
C2S unit vector to spherical
S2P spherical to p-vector
P2S p-vector to spherical
Operations on vectors

```
PPP p-vector plus p-vector
PMP p-vector minus p-vector
PPSP p-vector plus scaled p-vector
PDP inner (=scalar=dot) product of two p-vectors
PXP outer (=vector=cross) product of two p-vectors
PM modulus of p-vector
PN normalize p-vector returning modulus
SXP multiply p-vector by scalar
```

Operations on matrices

RXR	r-matrix multiply
TR	transpose r-matrix

Matrix-vector products

```
RXP product of r-matrix and p-vector
TRXP product of transpose of r-matrix and p-vector
```

Separation and position-angle

SEPP	angular separation from p-vectors
SEPS	angular separation from spherical coordinates
PAP	position-angle from p-vectors

PAS position-angle from spherical coordinates

Rotation vectors
RV2M r-vector to r-matrix

RM2V r-matrix to r-vector

Initialize

ZPV zero pv-vector
Copy/extend/extract

```
CPV copy pv-vector
P2PV append zero velocity to p-vector
PV2P discard velocity component of pv-vector
```

Spherical/Cartesian conversions
S2PV spherical to pv-vector
PV2S pv-vector to spherical
Operations on vectors

PVPPV	pv-vector plus pv-vector
PVMPV	pv-vector minus pv-vector
PVDPV	inner (=scalar=dot) product of two pv-vectors
PVXPV	outer (=vector=cross) product of two pv-vectors
PVM	modulus of pv-vector
SXPV	multiply pv-vector by scalar
S2XPV	multiply pv-vector by two scalars
PVU	update pv-vector
PVUP	update pv-vector discarding velocity

Matrix-vector products

```
RXPV product of r-matrix and pv-vector
TRXPV product of transpose of r-matrix and pv-vector
```


OPERATIONS ON ANGLES

```
ANP normalize radians to range 0 to 2pi
ANPM normalize radians to range -pi to +pi
A2TF decompose radians into hours, minutes, seconds
A2AF decompose radians into degrees, arcminutes, arcseconds
AF2A degrees, arcminutes, arcseconds to radians
D2TF decompose days into hours, minutes, seconds
TF2A hours, minutes, seconds to radians
TF2D hours, minutes, seconds to days
```

CALLS: FORTRAN VERSION
CALL iau_A2AF (NDP, ANGLE, SIGN, IDMSF)
CALL iau_A2TF (NDP, ANGLE, SIGN, IHMSF)
CALL iau_AF2A (S, IDEG, IAMIN, ASEC, RAD, J)
D = iau_ANP (A)
D = iau_ANPM (A)
CALL iau_C2S (P, THETA, PHI)
CALL iau_CP (P, C)
CALL iau_CPV (PV, C)
CALL iau_CR (R, C)
CALL iau_D2TF (NDP, DAYS, SIGN, IHMSF)
CALL iau_IR (R)
CALL iau_P2PV (P, PV)
CALL iau_P2S ($\mathrm{P}, \mathrm{THETA}, \mathrm{PHI}, \mathrm{R}$)
CALL iau_PAP (A, B, THETA)
CALL iau_PAS (AL, AP, BL, BP, THETA)
CALL iau_PDP (A, B, ADB)
CALL iau_PM (P, R)
CALL iau_PMP (A, B, AMB)
CALL iau_PN ($\mathrm{P}, \mathrm{R}, \mathrm{U}$)
CALL iau_PPP (A, B, APB)
CALL iau_PPSP (A, S, B, APSB)
CALL iau_PV2P (PV, P)
CALL iau_PV2S (PV, THETA, PHI, R, TD, PD, RD)
CALL iau_PVDPV (A, B, ADB)
CALL iau_PVM ($\mathrm{PV}, \mathrm{R}, \mathrm{S}$)
CALL iau_PVMPV (A, B, AMB)

CALL iau_PVPPV (A, B, APB)
CALL iau_PVU (DT, PV, UPV)
CALL iau_PVUP (DT, PV, P)
CALL iau_PVXPV (A, B, AXB)
CALL iau_PXP (A, B, AXB)
CALL iau_RM2V (R, P)
CALL iau_RV2M (P, R)
CALL iau_RX (PHI, R)
CALL iau_RXP ($R, P, R P$)
CALL iau_RXPV ($R, ~ P V, R P V$)
CALL iau_RXR (A, B, ATB)
CALL iau_RY (THETA, R)
CALL iau_RZ (PSI, R)
CALL iau_S2C (THETA, PHI, C)
CALL iau_S2P (THETA, PHI, R, P)
CALL iau_S2PV (THETA, PHI, R, TD, PD, RD, PV)
CALL iau_S2XPV ($S 1, S 2, P V$)
CALL iau_SEPP (A, B, S)
CALL iau_SEPS (AL, AP, BL, BP, S)
CALL iau_SXP (S, P, SP)
CALL iau_SXPV ($S, P V, S P V$)
CALL iau_TF2A (S, IHOUR, IMIN, SEC, RAD, J)
CALL iau_TF2D (S, IHOUR, IMIN, SEC, DAYS, J)
CALL iau_TR (R, RT)
CALL iau_TRXP (R, P, TRP)
CALL iau_TRXPV ($R, P V, T R P V$)
CALL iau_ZP (P)
CALL iau_ZPV (PV)
CALL iau_ZR (R)

CALLS: C VERSION

```
    iauA2af ( ndp, angle, &sign, idmsf );
    iauA2tf ( ndp, angle, &sign, ihmsf );
i = iauAf2a ( s, ideg, iamin, asec, &rad );
d = iauAnp ( a );
d = iauAnpm ( a );
    iauC2s ( p, &theta, &phi );
    iauCp ( p, c );
    iauCpv ( pv, c );
    iauCr ( r, c );
    iauD2tf ( ndp, days, &sign, ihmsf );
    iauIr ( r );
    iauP2pv ( p, pv );
    iauP2s ( p, &theta, &phi, &r );
d = iauPap ( a, b );
d = iauPas (al, ap, bl, bp );
d = iauPdp ( a, b );
d = iauPm ( p );
    iauPmp ( a, b, amb );
    iauPn ( p, &r, u );
    iauPpp ( a, b, apb );
    iauPpsp ( a, s, b, apsb );
    iauPv2p ( pv, p );
    iauPv2s ( pv, &theta, &phi, &r, &td, &pd, &rd );
    iauPvdpv ( a, b, adb );
    iauPvm ( pv, &r, &S );
    iauPvmpv ( a, b, amb );
    iauPvppv ( a, b, apb );
    iauPvu ( dt, pv, upv );
    iauPvup ( dt, pv, p );
    iauPvxpv ( a, b, axb );
    iauPxp ( a, b, axb );
    iauRm2v ( r, p );
    iauRv2m ( p, r );
    iauRx ( phi, r );
    iauRxp ( r, p, rp );
    iauRxpv ( r, pv, rpv );
    iauRxr ( a, b, atb );
    iauRy ( theta, r );
    iauRz ( psi, r );
    iauS2c ( theta, phi, c );
```

```
    iauS2p ( theta, phi, r, p );
    iauS2pv ( theta, phi, r, td, pd, rd, pV );
    iauS2xpv ( s1, s2, pv );
d = iauSepp ( a, b );
d = iauSeps ( al, ap, bl, bp );
    iauSxp ( s, p, sp );
    iauSxpv ( s, pv, spv );
i = iauTf2a ( s, ihour, imin, sec, &rad );
i = iauTf2d ( s, ihour, imin, sec, &days );
    iauTr ( r, rt );
    iauTrxp ( r, p, trp );
    iauTrxpv ( r, pv, trpv );
    iauZp ( p );
    iauZpv ( pv );
    iauZr ( r );
```

 d angle in radians
 Returned:
SIGN C \quad (${ }^{\prime}$ ' or \quad ' ${ }^{\prime}$
IDMSF i(4) degrees, arcminutes, arcseconds, fraction
Called:
iau_D2TF decompose days to hms
Notes:

1) NDP is interpreted as follows:

NDP
resolution
.. .00000000
$\begin{array}{rrrr}: & \cdots 0000 & 00 & 00 \\ -7 & 1000 & 00 & 00\end{array}$
$\begin{array}{lr}-6 & 1000000\end{array}$
$\begin{array}{lr}-5 & 100000\end{array}$
$\begin{array}{llll}-4 & 1 & 00 & 00\end{array}$
$\begin{array}{lll}-3 & 0 & 10 \\ 0 & 00\end{array}$
$\begin{array}{lll}-2 & 0 & 01 \\ 0 & 00\end{array}$
$\begin{array}{lll}-1 & 0 & 00 \\ 0 & 10\end{array}$
$0 \quad 0 \quad 0001$
$1 \quad 0 \quad 0000.1$
200000.01
$3000 \quad 00.001$
: $\quad 00000.000 \ldots$
2) The largest positive useful value for NDP is determined by the
size of ANGLE, the format of DOUBLE PRECISION floating-point
numbers on the target platform, and the risk of overflowing
IDMSF (4). On a typical platform, for ANGLE up to 2pi, the
available floating-point precision might correspond to NDP=12.
However, the practical limit is typically NDP=9, set by the
capacity of a 32-bit IDMSF (4).
3) The absolute value of ANGLE may exceed 2 pi. In cases where it
does not, it is up to the caller to test for and handle the
case where ANGLE is very nearly 2 pi and rounds up to 360 degrees,
by testing for $\operatorname{IDMSF}(1)=360$ and setting $\operatorname{IDMSF}(1-4)$ to zero.
*
NDP i resolution (Note 1)
ANGLE d angle in radians
Returned:
SIGN
S
IHMSF i(4) hours, minutes, seconds, fraction
Called:
iau_D2TF decompose days to hms
Notes:
1) NDP is interpreted as follows:
NDP
$\begin{array}{rrrr}: 7 & \cdots 0000 & 00 & 00 \\ -7 & 1000 & 00 & 00\end{array}$
$\begin{array}{lr}-6 & 100 \\ -500\end{array}$
$\begin{array}{lr}-5 & 10 \\ -100 & 00\end{array}$
$\begin{array}{lll}-4 & 1 & 00 \\ & 00\end{array}$
$\begin{array}{lll}-3 & 0 & 10 \\ & 00\end{array}$

-2	0	01

 \(\begin{array}{lll}-1 & 0 & 00 \\ -10\end{array}\)
 \(0 \quad 0 \quad 0001\)
 \(\begin{array}{llll}1 & 0 & 00 & 00.1\end{array}\)
 \(2000 \quad 00.01\)
 \(3000 \quad 00.001\)
 : \(\quad 0 \quad 00\) 00.000...
 2) The largest useful value for NDP is determined by the size
 of ANGLE, the format of DOUBLE PRECISION floating-point numbers
 on the target platform, and the risk of overflowing IHMSF (4).
 On a typical platform, for ANGLE up to 2pi, the available
 floating-point precision might correspond to NDP=12. However,
 the practical limit is typically \(N D P=9\), set by the capacity of
 a 32-bit IHMSF (4).
 3) The absolute value of ANGLE may exceed 2 pi. In cases where it
 does not, it is up to the caller to test for and handle the
 case where ANGLE is very nearly 2 pi and rounds up to 24 hours,
 by testing for \(\operatorname{IHMSF}(1)=24\) and setting \(\operatorname{IHMSF}(1-4)\) to zero.
 sign: '_' = negative, otherwise positive
 IDEG
degrees
IAMIN i arcminutes
ASEC d arcseconds
Returned:
RAD d angle in radians
J i status: $0=O K$
$1=$ IDEG outside range $0-359$
2 = IAMIN outside range 0-59
3 = ASEC outside range 0-59.999...
Notes:

1) If the s argument is a string, only the leftmost character is
used and no warning status is provided.
2) The result is computed even if any of the range checks fail.

* 3) Negative IDEG, IAMIN and/or ASEC produce a warning status, but
the absolute value is used in the conversion.

4) If there are multiple errors, the status value reflects only the
first, the smallest taking precedence.

* i a u \quad A N P
* - _ _ _ _ _ - -
*
* Normalize angle into the range $0<=A<2 p i$.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* Given: d angle (radians)
*
* Returned:
* iau_ANP
$d \quad$ angle in range $0-2 p i$
* i a u_A N P M
* _ _ _ _ _ _ _ _ -
*
* Normalize angle into the range -pi $<=A<+p i$.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* $\underset{\text { A }}{*}$ d angle (radians)
*
* Returned:
* iau_ANP
d angle in range +/-pi
DRA d the ICRS RA of the J2000.0 mean equinox

Notes:

1) The frame bias corrections in longitude and obliquity (radians) are required in order to correct for the offset between the GCRS pole and the J2000.0 mean pole. They define, with respect to the GCRS frame, a J2000.0 mean pole that is consistent with the rest of the IAU 2000A precession-nutation model.
2) In addition to the displacement of the pole, the complete description of the frame bias requires also an offset in right ascension. This is not part of the IAU 2000A model, and is from Chapront et al. (2002). It is returned in radians.
3) This is a supplemented implementation of one aspect of the IAU 2000A nutation model, formally adopted by the IAU General Assembly in 2000, namely MHB2000 (Mathews et al. 2002).
```
References:
```

Chapront, J., Chapront-Touze, M. \& Francou, G., Astron.Astrophys., 387, 700, 2002 .

Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New nutation series for nonrigid Earth and insights into the Earth's interior", J.Geophys.Res., 107, B4, 2002. The MHB2000 code itself was obtained on 9th September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.
RP $d(3,3)$ precession matrix (Note 3)
RBP $d(3,3)$ bias-precession matrix (Note 4)

Notes:

1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD (TT) $=2450123.7$ could be expressed in any of these ways, among others:

DATE1	DATE2	
$2450123.7 D 0$	$0 D 0$	(JD method)
$2451545 D 0$	$-1421.3 D 0$	(J2000 method)
$2400000.5 D 0$	$50123.2 D 0$	(MJD method)
$2450123.5 D 0$	$0.2 D 0$	(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix RB transforms vectors from GCRS to mean J2000.0 by applying frame bias.
3) The matrix RP transforms vectors from J2000.0 mean equator and equinox to mean equator and equinox of date by applying precession.
4) The matrix RBP transforms vectors from GCRS to mean equator and equinox of date by applying frame bias then precession. It is the product $R P$ x RB.

Called:

iau_BI00 frame bias components, IAU 2000
iau_PR00 IAU 2000 precession adjustments
iau_IR initialize r-matrix to identity
iau_RX rotate around X-axis
iau_RY rotate around Y-axis
iau_RZ rotate around Z-axis
iau_RXR product of two r-matrices

Reference:

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
"Expressions for the Celestial Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A precession-nutation model", Astron.Astrophys. 400, 1145-1154 (2003)
n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by IAU 2006 Resolution 2.
*-

* i a u_B P 06
* _ _ _ _ _ _ _ _ -
*
* Frame bias and precession, IAU 2006.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
*
* Given:
* DATE1,DATE2 T as a 2-part Julian Date (Note 1)
* Returned:
* Returned
$R B \quad d(3,3)$ frame bias matrix (Note 2)
$R P$ d $(3,3)$ precession matrix (Note 3)
RBP $d(3,3)$ bias-precession matrix (Note 4)
Notes:

1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
convenient way between the two arguments. For example,
JD (TT) $=2450123.7$ could be expressed in any of these ways,
among others:

DATE1	DATE2	
$2450123.7 D 0$	$0 D 0$	(JD method)
$2451545 D 0$	$-1421.3 D 0$	(J2000 method)
$2400000.5 D 0$	$50123.2 D 0$	(MJD method)
$2450123.5 D 0$	$0.2 D 0$	(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix RB transforms vectors from GCRS to mean J2000.0 by applying frame bias.
3) The matrix RP transforms vectors from mean $J 2000.0$ to mean of date by applying precession.
4) The matrix RBP transforms vectors from GCRS to mean of date by applying frame bias then precession. It is the product $R P \times R B$.

Called:
iau_PFW06 bias-precession F-W angles, IAU 2006
iau_FW2M $\quad \mathrm{F}-\mathrm{W}$ angles to r -matrix
iau_PMAT06 PB matrix, IAU 2006
iau_TR transpose r-matrix
iau_RXR product of two r-matrices
References:
Capitaine, N. \& Wallace, P.T., 2006, Astron.Astrophys. 450, 855
Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981
Returned:
X,Y d Celestial Intermediate Pole (Note 2)

* X,
* Notes:
\star

1) The matrix RBPN transforms vectors from GCRS to true equator (and CIO or equinox) of date, and therefore the Celestial Intermediate Pole unit vector is the bottom row of the matrix.
2) X, Y are components of the Celestial Intermediate Pole unit vector in the Geocentric Celestial Reference System.

Reference:
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., "Expressions for the Celestial Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A precession-nutation model", Astron.Astrophys. 400, 1145-1154 (2003)
n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by IAU 2006 Resolution 2.

* i a u C 2 I 0 OA
* _ _ _ _ _ _ _ _ _ _
*
* Form the celestial-to-intermediate matrix for a given date using the
* IAU 2000A precession-nutation model.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given
DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
Returned: $\quad d(3,3) \quad$ celestial-to-intermediate matrix (Note 2)
RC2I
Notes:
*
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.

2) The matrix RC2I is the first stage in the transformation from celestial to terrestrial coordinates:
```
[TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
    = RC2T * [CRS]
```

where [CRS] is a vector in the Geocentric Celestial Reference System and [TRS] is a vector in the International Terrestrial Reference System (see IERS Conventions 2003), ERA is the Earth Rotation Angle and RPOM is the polar motion matrix.
3) A faster, but slightly less accurate result (about 1 mas), can be obtained by using instead the iau_C2IOOB routine.

Called:

```
    iau_PNMOOA classical NPB matrix, IAU 2000A
    iau_C2IBPN celestial-to-intermediate matrix, given NPB matrix
```

References:
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
"Expressions for the Celestial Intermediate Pole and Celestial
Ephemeris Origin consistent with the IAU 2000A precession-nutation
model", Astron.Astrophys. 400, 1145-1154 (2003)
n.b. The celestial ephemeris origin (CEO) was renamed "celestial
intermediate origin" (CIO) by IAU 2006 Resolution 2.
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)

$$
\begin{aligned}
& { }^{*} \\
& { }^{\prime}
\end{aligned}
$$

Returned: $\quad d(3,3) \quad$ celestial-to-intermediate matrix (Note 2)
RC2I

Notes:

* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, $J D(T T)=2450123.7$ could be expressed in any of these ways, among others:

DATE2

$2450123.7 D 0$	$0 D 0$
2451545 DD	-1421.3 DO
2400000.5 DO	50123.2 DO
2450123.5 DO	0.2 D 0

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The $J 2000$ method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix RC2I is the first stage in the transformation from celestial to terrestrial coordinates:

```
[TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
    = RC2T * [CRS]
```

where [CRS] is a vector in the Geocentric Celestial Reference System and [TRS] is a vector in the International Terrestrial Reference System (see IERS Conventions 2003), ERA is the Earth Rotation Angle and RPOM is the polar motion matrix.
3) The present routine is faster, but slightly less accurate (about 1 mas), than the iau_C2IOOA routine.

Called:

iau_PNMOOB \quad| classical NPB matrix, IAU 2000B |
| :--- |
| iau_C2IBPN |
| celestial-to-intermediate matrix, given NPB matrix |

References:
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
"Expressions for the Celestial Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A precession-nutation model", Astron.Astrophys. 400, 1145-1154 (2003)
n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by IAU 2006 Resolution 2.

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)

$$
\begin{aligned}
& { }^{*} \\
& { }^{\prime}
\end{aligned}
$$

1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD $(T T)=2450123.7$ could be expressed in any of these ways, among others:

DATE1	DATE2	
$2450123.7 D 0$	$0 D 0$	(JD method)
$2451545 D 0$	$-1421.3 D 0$	(J2000 method)
$2400000.5 D 0$	$50123.2 D 0$	(MJD method)
$2450123.5 D 0$	$0.2 D 0$	(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix RC2I is the first stage in the transformation from celestial to terrestrial coordinates:

```
[TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
    = RC2T * [CRS]
```

where [CRS] is a vector in the Geocentric Celestial Reference System and [TRS] is a vector in the International Terrestrial Reference System (see IERS Conventions 2003), ERA is the Earth Rotation Angle and RPOM is the polar motion matrix.

Called:
iau_PNM06A classical NPB matrix, IAU 2006/2000A
iau_BPN2XY extract CIP X, Y coordinates from NPB matrix
iau_S06
the CIO locator s, given X, Y, IAU 2006
iau_C2IXYS celestial-to-intermediate matrix, given X, Y and s
References:
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note No. 32, BKG

Capitaine, N. \& Wallace, P.T., 2006, Astron.Astrophys. 450, 855 Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981

* i a
* i a u_C 2 I B P N

*
\star

* Form the celestial-to-intermediate matrix for a given date given
* the bias-precession-nutation matrix. IAU 2000.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
\star
* Given:
DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
RBPN d(3,3) celestial-to-true matrix (Note 2)
Returned:
RC2I d(3,3) celestial-to-intermediate matrix (Note 3)
Notes:

1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
convenient way between the two arguments. For example,
JD (TT) $=2450123.7$ could be expressed in any of these ways,
among others:

DATE1	DATE2	
$2450123.7 D 0$	$0 D 0$	(JD method)
$2451545 D 0$	$-1421.3 D 0$	(J2000 method)
$2400000.5 D 0$	$50123.2 D 0$	(MJD method)
$2450123.5 D 0$	$0.2 D 0$	(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix RBPN transforms vectors from GCRS to true equator (and CIO or equinox) of date. Only the CIP (bottom row) is used.
3) The matrix RC2I is the first stage in the transformation from celestial to terrestrial coordinates:

```
[TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
= RC2T * [CRS]
```

where [CRS] is a vector in the Geocentric Celestial Reference System and [TRS] is a vector in the International Terrestrial Reference System (see IERS Conventions 2003), ERA is the Earth Rotation Angle and RPOM is the polar motion matrix.
4) Although its name does not include "00", this routine is in fact specific to the IAU 2000 models.

Called:
iau_BPN2XY extract CIP X, Y coordinates from NPB matrix iau_C2IXY celestial-to-intermediate matrix, given X, Y

References:
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
"Expressions for the Celestial Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A precession-nutation model", Astron.Astrophys. 400, 1145-1154 (2003)
n.b. The celestial ephemeris origin (CEO) was renamed "celestial

* McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
* IERS Technical Note No. 32, BKG (2004)
*

*-

DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
X,Y d Celestial Intermediate Pole (Note 2)
Returned:
RC2I d(3,3) celestial-to-intermediate matrix (Note 3
Notes:

1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, $J D(T T)=2450123.7$ could be expressed in any of these ways, among others:

DATE1	DATE2	
$2450123.7 D 0$	$0 D 0$	(JD method)
$2451545 D 0$	$-1421.3 D 0$	(J2000 method)
$2400000.5 D 0$	$50123.2 D 0$	(MJD method)
$2450123.5 D 0$	$0.2 D 0$	(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The Celestial Intermediate Pole coordinates are the x, y components of the unit vector in the Geocentric Celestial Reference System.
3) The matrix RC2I is the first stage in the transformation from celestial to terrestrial coordinates:

```
[TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
                    = RC2T * [CRS]
```

where [CRS] is a vector in the Geocentric Celestial Reference System and [TRS] is a vector in the International Terrestrial Reference System (see IERS Conventions 2003), ERA is the Earth Rotation Angle and RPOM is the polar motion matrix.
4) Although its name does not include "00", this routine is in fact specific to the IAU 2000 models.

Called:
iau_C2IXYS celestial-to-intermediate matrix, given X, Y and s iau_S00 the CIO locator s, given X,Y, IAU 2000A

Reference:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)
d Celestial Intermediate Pol
Returned:
RC2I d(3,3) celestial-to-intermediate matrix (Note 3)
Notes:

1) The Celestial Intermediate Pole coordinates are the x, y components
of the unit vector in the Geocentric Celestial Reference System.
2) The CIO locator s (in radians) positions the Celestial
Intermediate Origin on the equator of the CIP.
3) The matrix RC2I is the first stage in the transformation from
celestial to terrestrial coordinates:
[TRS] $=$ RPOM * R_3(ERA) * RC2I * [CRS]
$=\operatorname{RC} 2 \mathrm{~T} *[\mathrm{CRS}]$
where [CRS] is a vector in the Geocentric Celestial Reference
System and [TRS] is a vector in the International Terrestrial
Reference System (see IERS Conventions 2003), ERA is the Earth
Rotation Angle and RPOM is the polar motion matrix.
Called:
iau_IR initialize r-matrix to identity
iau_RZ rotate around Z-axis
iau_RY rotate around Y-axis
Reference:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)

* Status: vector/matrix support routine.
*
* Given:
* P d(3) p-vector
\star
* Returned:
* THETA d longitude angle (radians)
* PHI d latitude angle (radians)
*
* Notes:
* 1) P can have any magnitude; only its direction is used.
* 2) If P is null, zero THETA and PHI are returned.
* 3) At either pole, zero THETA is returned.
*
* - _ - - - - - - - - -
* i a u_C 2 T 0 O A
* _ _ _ _-_ _ _ _ _ _
*
* Form the celestial to terrestrial matrix given the date, the UT1 and
* the polar motion, using the IAU 2000A nutation model.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
TTA, TTB $\quad d \quad$ TT as a 2-part Julian Date (Note 1)
UTA, UTB d UT1 as a 2-part Julian Date (Note 1)
XP, YP d coordinates of the pole (radians, Note 2)
Returned:
RC2T $d(3,3)$ celestial-to-terrestrial matrix (Note 3)
\star
\star
Notes:
* iau_C2TCIO form CIO-based celestial-to-terrestrial matrix
* Reference:
* McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
* IERS Technical Note No. 32, BKG (2004)

\star
\star
\star

* - _ - _ - - _ - _ - -
* i a u_C 2 T 00 B
* _ _ _ _ _ _ - _ _ - -
*
* Form the celestial to terrestrial matrix given the date, the UT1 and
* the polar motion, using the IAU 2000B nutation model.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
TTA, TTB $\quad d \quad$ TT as a 2-part Julian Date (Note 1)
UTA, UTB d UT1 as a 2-part Julian Date (Note 1)
XP, YP d coordinates of the pole (radians, Note 2)
Returned:
RC2T $d(3,3)$ celestial-to-terrestrial matrix (Note 3)
\star
\star
Notes:
iau_POM00 polar motion matrix
* iau_C2TCIO form CIO-based celestial-to-terrestrial matrix
*
* Reference:
* McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
* IERS Technical Note No. 32, BKG (2004)
\star
-

```
        SUBROUTINE iau_C2T06A ( TTA, TTB, UTA, UTB, XP, YP, RC2T )
**
* _ _ _ _ _ _ _ _ _ _ -
* i a u_C 2 T 0 6 A
* _ _ _ _ _ _ _ _ _ _ -
*
* Form the celestial to terrestrial matrix given the date, the UT1 and
* the polar motion, using the IAU 2006 precession and IAU 2000A
* nutation models.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
* Given:
*
*
The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 and MJD methods are good compromises between resolution and convenience. In the case of UTA, UTB, the date \& time method is best matched to the Earth rotation angle algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when the UTA argument is for Ohrs UT1 on the day in question and the UTB argument lies in the range 0 to 1 , or vice versa.
2) \(X P\) and \(Y P\) are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians to 0 and 90 deg west respectively.
3) The matrix RC2T transforms from celestial to terrestrial coordinates:
```

```
[TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
```

[TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
= RC2T * [CRS]
= RC2T * [CRS]
where [CRS] is a vector in the Geocentric Celestial Reference System and [TRS] is a vector in the International Terrestrial Reference System (see IERS Conventions 2003), RC2I is the celestial-to-intermediate matrix, ERA is the Earth rotation angle and RPOM is the polar motion matrix.
Called:
iau_C2I06A celestial-to-intermediate matrix, IAU 2006/2000A
iau_ERA00 Earth rotation angle, IAU 2000
iau_SP00 the TIO locator s^{\prime}, IERS 2000
iau_POM00 polar motion matrix
iau_C2TCIO form CIO-based celestial-to-terrestrial matrix

```
* Reference:
* McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003),
* IERS Technical Note No. 32, BKG
\(\star\)
-
* Assemble the celestial to terrestrial matrix from CIO-based
* components (the celestial-to-intermediate matrix, the Earth Rotation
* Angle and the polar motion matrix).
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: obsolete routine.
* Given:
* Given:
        RC2I d(3,3) celestial-to-intermediate matrix
        ERA d Earth rotation angle
        RPOM d \((3,3)\) polar-motion matrix
\(\star\)
\(\star\)
* Returned:
    RC2T d(3,3) celestial-to-terrestrial matrix
    Notes:
    1) The name of the present routine, iau_c2TCEO, reflects the original
        name of the celestial intermediate origin (CIO), which before the
        adoption of IAU 2006 Resolution 2 was called the "celestial
        ephemeris origin" (CEO).
    2) When the name change from CEO to CIO occurred, a new SOFA routine
        called iau_C2TCIO was introduced as the successor to the existing
        iau_C2TCEO. The present routine is merely a front end to the new
        one.
    3) The present routine is included in the SOFA collection only to
        support existing applications. It should not be used in new
        applications.
    Called:
        iau_C2TCIO form CIO-based celestial-to-terrestrial matrix
\(\star\)
\(\star\)
\(\star\)
* i a u _ C 2 T C I O
\(\star\)
\(\star\)
\(\star\)
* Assemble the celestial to terrestrial matrix from CIO-based
* components (the celestial-to-intermediate matrix, the Earth Rotation
* Angle and the polar motion matrix).
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: support routine.
\(\star\)
* Given:
* Given:
        RC2I d(3,3) celestial-to-intermediate matrix
        ERA d Earth rotation angle
        RPOM d(3,3) polar-motion matrix
\(*\)
\(*\)
*
* Reference System (see IERS Conventions 2003).
iau_CR copy r-matrix
iau_RZ rotate around Z-axis
iau_RXR product of two r-matrices

Reference:
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note No. 32, BKG
* i a u \(\quad\) C 2 T E Q X
* _ _ _ _-_ _ _ _ _ _
*
* Assemble the celestial to terrestrial matrix from equinox-based
* components (the celestial-to-true matrix, the Greenwich Apparent
* Sidereal Time and the polar motion matrix).
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: support routine.
*
* Given
    IERS Technical Note No. 32, BKG (2004)
    where [CRS] is a vector in the Geocentric Celestial Reference
    System and [TRS] is a vector in the International Terrestrial Reference System (see IERS Conventions 2003).

Called:
iau_CR copy r-matrix
iau_RZ rotate around Z-axis
iau_RXR product of two r-matrices

Reference:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)
```

 SUBROUTINE iau_C2TPE (TTA, TTB, UTA, UTB, DPSI, DEPS, XP, YP,
    ```
        :
```

 :
 *+
*+
*
*

* i a u C 2 T P F
* i a u C 2 T P F
*
*
* Form the celestial to terrestrial matrix given the date, the UT1, the
* Form the celestial to terrestrial matrix given the date, the UT1, the
* nutation and the polar motion. IAU 2000.
* nutation and the polar motion. IAU 2000.
*
*
* This routine is part of the International Astronomical Union's
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* SOFA (Standards of Fundamental Astronomy) software collection.
*
*
* Status: support routine.
* Status: support routine.
*
*
*
*
* Given
* Given
* TTA, TTB
* TTA, TTB
TTA,TTB d TT as a 2-part Julian Date (Note 1)
TTA,TTB d TT as a 2-part Julian Date (Note 1)
UTA,UTB d UT1 as a 2-part Julian Date (Note 1)
UTA,UTB d UT1 as a 2-part Julian Date (Note 1)
DPSI,DEPS d nutation (Note 2)
DPSI,DEPS d nutation (Note 2)
XP,YP d coordinates of the pole (radians, Note 3)
XP,YP d coordinates of the pole (radians, Note 3)
Returned:
Returned:
RC2T d(3,3) celestial-to-terrestrial matrix (Note 4)
RC2T d(3,3) celestial-to-terrestrial matrix (Note 4)
Notes:
Notes:
*
*
*
*
*

```
*
```

| UTA | UTB | |
| :---: | :---: | :--- |
| $2450123.7 D 0$ | $0 D 0$ | (JD method) |
| $2451545 D 0$ | $-1421.3 D 0$ | (J2000 method) |
| $2400000.5 D 0$ | $50123.2 D 0$ | (MJD method) |
| $2450123.5 D 0$ | $0.2 D 0$ | (date \& time method) |

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 and MJD methods are good compromises between resolution and convenience. In the case of UTA, UTB, the date \& time method is best matched to the Earth rotation angle algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when the UTA argument is for Ohrs UT1 on the day in question and the UTB argument lies in the range 0 to 1 , or vice versa.
2) The caller is responsible for providing the nutation components; they are in longitude and obliquity, in radians and are with respect to the equinox and ecliptic of date. For high-accuracy applications, free core nutation should be included as well as any other relevant corrections to the position of the CIP.
3) $X P$ and $Y P$ are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians to 0 and 90 deg west respectively.
4) The matrix RC2T transforms from celestial to terrestrial coordinates:

$$
\begin{aligned}
{[\mathrm{TRS}] } & =\text { RPOM * R_3 (GST) * RBPN * [CRS] } \\
& =\text { RC2T * [CRS] }
\end{aligned}
$$

where [CRS] is a vector in the Geocentric Celestial Reference System and [TRS] is a vector in the International Terrestrial Reference System (see IERS Conventions 2003), RBPN is the bias-precession-nutation matrix, GST is the Greenwich (apparent) Sidereal Time and RPOM is the polar motion matrix.

```
```

- - - - - - - -

```
- - - - - - - -
Given:
Given:
1) The TT and UT1 dates TTA+TTB and UTA+UTB are Julian Dates,
1) The TT and UT1 dates TTA+TTB and UTA+UTB are Julian Dates,
    apportioned in any convenient way between the arguments UTA and
    apportioned in any convenient way between the arguments UTA and
    UTB. For example, JD (UT1)=2450123.7 could be expressed in any of
    UTB. For example, JD (UT1)=2450123.7 could be expressed in any of
    these ways, among others:
```

 these ways, among others:
    ```
* 5) Although its name does not include "00", this routine is in fact
* specific to the IAU 2000 models.
* Called
*
iau_PN00 iau_GMST00 Greenwich mean sidereal time, IAU 2000
iau_SP00 the TIO locator \(s^{\prime}\), IERS 2000
* iau_EE00
* iau POMOO
\(\star\)
\(\star\)
*
\(\star\)
* McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
* IERS Technical Note No. 32, BKG (2004)
\(\star\)
*
* i
* i a u - C 2 T X Y
*
\(\star\)
* Form the celestial to terrestrial matrix given the date, the UT1, the
* CIP coordinates and the polar motion. IAU 2000.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
        TTA, TTB
        UTA, UTB d UT1 as a 2-part Julian Date (Note 1)
        TT as a 2-part Julian Date (Note 1)
        X, Y
        Celestial Intermediate Pole (Note 2)
        XP,YP
                                coordinates of the pole (radians, Note 3)
*
* Returned:
    RC2T \(d(3,3)\) celestial-to-terrestrial matrix (Note 4)
\(\star \quad\) RC2T
    Notes:
* 1) The TT and UT1 dates TTA+TTB and UTA+UTB are Julian Dates,
*
    apportioned in any convenient way between the arguments UTA and
    UTB. For example, JD (UT1) \(=2450123.7\) could be expressed in any of
    these ways, among others:
UTA
\(2450123.7 D 0\)
\(2451545 D 0\)
\(2400000.5 D 0\)
\(2450123.5 D 0\)
\[
\begin{gathered}
0 D 0 \\
-1421.3 D 0 \\
50123.2 \mathrm{D} 0 \\
0.2 \mathrm{D} 0
\end{gathered}
\]
(JD method) (J2000 method)
        \(2400000.5 D 0\)
\(2450123.5 D 0\)
        (MJD method)
(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 and MJD methods are good compromises between resolution and convenience. In the case of UTA, UTB, the date \& time method is best matched to the Earth rotation angle algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when the UTA argument is for Ohrs UT1 on the day in question and the UTB argument lies in the range 0 to 1 , or vice versa.
2) The Celestial Intermediate Pole coordinates are the \(x, y\) components of the unit vector in the Geocentric Celestial Reference System.
3) \(X P\) and \(Y P\) are the coordinates (in radians) of the Celestial Intermediate Pole with respect to the International Terrestrial Reference System (see IERS Conventions 2003), measured along the meridians to 0 and 90 deg west respectively.
4) The matrix RC2T transforms from celestial to terrestrial coordinates:
```

[TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
= RC2T * [CRS]

```
    where [CRS] is a vector in the Geocentric Celestial Reference
    System and [TRS] is a vector in the International Terrestrial
    Reference System (see IERS Conventions 2003), ERA is the Earth
    Rotation Angle and RPOM is the polar motion matrix.
    5) Although its name does not include "00", this routine is in fact
    specific to the IAU 2000 models.
* Called:
    iau_C2IXY celestial-to-intermediate matrix, given \(X, Y\)
* iau_ERA00 Earth rotation angle, IAU 2000
* iau_SP00 the TIO locator s', IERS 2000
* iau_POMO0 polar motion matrix
* iau_C2TCIO form CIO-based celestial-to-terrestrial matrix
* Reference:
*
* McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
* IERS Technical Note No. 32, BKG (2004)
\(\star\)
* i
* i a u_C A L 2 J D
\(\star\)
* Gregorian Calendar to Julian Date.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
*
* Given:
* IY,IM,ID i year, month, day in Gregorian calendar (Note 1)
*
* Returned:
        DJM0 d MJD zero-point: always 2400000.5
        DJM d Modified Julian Date for 0 hrs
        J
* DJM
        status:
        \(0=O K\)
        \(-1=\) bad year (Note 3: JD not computed)
        \(-2=\) bad month (JD not computed)
        \(-3=\) bad day \(\quad\) (JD computed)
    Notes:
    1) The algorithm used is valid from -4800 March 1, but this
        implementation rejects dates before -4799 January 1.
    2) The Julian Date is returned in two pieces, in the usual SOFA
        manner, which is designed to preserve time resolution. The
        Julian Date is available as a single number by adding DJMO and
        DJM.
    3) In early eras the conversion is from the "Proleptic Gregorian
        Calendar"; no account is taken of the date(s) of adoption of
        the Gregorian Calendar, nor is the \(A D / B C\) numbering convention
        observed.
    Reference:
        Explanatory Supplement to the Astronomical Almanac,
        P. Kenneth Seidelmann (ed), University Science Books (1992),
        Section 12.92 (p604).
```

 SUBROUTINE iau_CP (P, C)
 *+

* - - - - _ - -
* i a u - C P
* _ _ _ _ _ _ -
*
* Copy a p-vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* P d(3) p-vector to be copied
*
* Returned:
* C d(3) copy
*

```
* - - - - - - - -
* i a u _ C P V
* _ _ _ _ _ _ _
*
* Copy a position/velocity vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* PV d(3,2) position/velocity vector to be copied
*
* Returned:
* C d(3,2) copy
*
* Called:
* iau_CP copy p-vector
* - _ - - _ - -
* \(\quad\) i a \(u-C R\)
* - _ _ _ _ -
*
* Copy an r-matrix.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* \(\quad\) R \(\quad d(3,3) \quad\)-matrix to be copied
*
* Returned:
* C d(3,3) copy
* Called:
* iau_CP copy p-vector
*
* i a u_D 2 D T F
* _ _ _ _- _ _ _ _ -
* Format for output a 2 -part Julian Date (or in the case of UTC a
* quasi-JD form that includes special provision for leap seconds).
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given:
    SCALE \(C^{*}(*)\) time scale ID (Note 1)
    NDP i resolution (Note 2)
    D1,D2 d time as a 2-part Julian Date (Notes 3,4)
Returned:
        IY,IM,ID i year, month, day in Gregorian calendar (Note 5)
        IHMSF i(4) hours, minutes, seconds, fraction (Note 1)
        J
            \(\begin{array}{ll}i(4) & \text { hours, minutes, seconds, fraction } \\ \text { i } & \text { status: }+1=\text { dubious year (Note 5) }\end{array}\)
                        \(0=\) OK
                            \(-1=\) unacceptable date (Note 6)
Notes:
1) SCALE identifies the time scale. Only the value 'UTC' (in upper
        case) is significant, and enables handling of leap seconds (see
        Note 4).
    2) NDP is the number of decimal places in the seconds field, and can
    have negative as well as positive values, such as:
    NDP resolution
    \(-4 \quad 10000\)
    -3 \(010 \quad 00\)
    \(\begin{array}{lll}-2 & 0 & 01 \\ 00\end{array}\)
    \(\begin{array}{llll}-1 & 0 & 00 & 10\end{array}\)
    \(0 \quad 0 \quad 0001\)
    \(0 \quad 00 \quad 00.1\)
    00000.01
    \(000 \quad 00.001\)
    The limits are platform dependent, but a safe range is -5 to +9 .
    3) \(\mathrm{D} 1+\mathrm{D} 2\) is Julian Date, apportioned in any convenient way between
        the two arguments, for example where D1 is the Julian Day Number
        and D2 is the fraction of a day. In the case of UTC, where the
        use of JD is problematical, special conventions apply: see the
        next note.
    4) JD cannot unambiguously represent UTC during a leap second unless
        special measures are taken. The SOFA internal convention is that
        the quasi-JD day represents UTC days whether the length is 86399,
        86400 or 86401 SI seconds.
    5) The warning status "dubious year" flags UTCs that predate the
        introduction of the time scale and that are too far in the future
        to be trusted. See iau_DAT for further details.
    6) For calendar conventions and limitations, see iau_CAL2JD.
Called:
    iau_JD2CAL JD to Gregorian calendar
    iau_D2TF decompose days to hms
    iau_DAT delta(AT) = TAI-UTC
DAYS d interval in days
Returned:
    SIGN C \(\quad\) ' + or \({ }^{\prime}\)-'
    IHMSF i(4) hours, minutes, seconds, fraction
Notes:
1) NDP is interpreted as follows:
    NDP resolution
    \begin{tabular}{rl}
-7 & \(\cdots 000\) \\
-7 & 00 \\
\hline
\end{tabular}
    \(-7 \quad 10000000\)
    -6 1000000
    \(-5 \quad 100000\)
    \(\begin{array}{lll}-4 & 10000\end{array}\)
    \begin{tabular}{lll}
-3 & 0 & 10 \\
\hline
\end{tabular}
    \(-2 \quad 0 \quad 0100\)
    \(\begin{array}{llll}-1 & 0 & 00 & 10\end{array}\)
    \(0 \quad 0 \quad 0001\)
    \(1 \quad 0 \quad 00 \quad 00.1\)
    \(\begin{array}{lll}2 & 0 & 00 \quad 00.01 \\ 3 & 0 & 00 \\ 0\end{array}\)
    300000.001
    : \(00000.000 \ldots\)
    2) The largest positive useful value for NDP is determined by the size of DAYS, the format of DOUBLE PRECISION floating-point numbers on the target platform, and the risk of overflowing IHMSF (4). On a typical platform, for DAYS up to 1D0, the available floating-point precision might correspond to NDP=12. However, the practical limit is typically NDP=9, set by the capacity of a 32-bit IHMSF (4).
3) The absolute value of DAYS may exceed \(1 D 0\). In cases where it does not, it is up to the caller to test for and handle the case where DAYS is very nearly \(1 D 0\) and rounds up to 24 hours, by testing for IHMSF(1)=24 and setting IHMSF(1-4) to zero.
\(\star+\)
\(\star\)
\(\star\)
* i a u_D A T
* _ _ _ _-_ _ _
\(\star\)
* For a given UTC date, calculate delta(AT) = TAI-UTC.
    ------------------------------------------------
                    IMPORTANT
    A new version of this routine must be
    produced whenever a new leap second is
    announced. There are five items to
    change on each such occasion:
1) The parameter NDAT must be increased by 1.
2) The set of DATA statements that initialize the arrays IDAT and DATS must be extended by one line.
3) The parameter IYV must be set to the current year.
4) The "Latest leap second" comment below must be set to the new leap second date.
5) The "This revision" comment, later, must be set to the current date.

Change (3) must also be carried out whenever the routine is re-issued, even if no leap seconds have been added.

Latest leap second: 2012 June 30

This routine is part of the International Astronomical Union's SOFA (Standards of Fundamental Astronomy) software collection.

Status: support routine.
Given:
\begin{tabular}{llll} 
IY & i & UTC: & year (Notes 1 and 2) \\
IM & i & & month (Note 2) \\
ID & i & & day (Notes 2 and 3) \\
FD & d & & fraction of day (Note 4)
\end{tabular}

Returned:
DELTAT d TAI minus UTC, seconds
\(J\) i status (Note 5):
1 = dubious year (Note 1)
\(0=O K\)
\(-1=\) bad year
\(-2=\) bad month
\(-3=\) bad day (Note 3)
\(-4=\) bad fraction (Note 4)
Notes:
1) UTC began at 1960 January 1.0 (JD 2436934.5) and it is improper to call the routine with an earlier date. If this is attempted, zero is returned together with a warning status.

Because leap seconds cannot, in principle, be predicted in
advance, a reliable check for dates beyond the valid range is
\(\star\)
impossible. To guard against gross errors, a year five or more after the release year of the present routine (see parameter IYV) is considered dubious. In this case a warning status is returned but the result is computed in the normal way.

For both too-early and too-late years, the warning status is \(\mathrm{J}=+1\). This is distinct from the error status \(J=-1\), which signifies a year so early that JD could not be computed.
2) If the specified date is for a day which ends with a leap second, the UTC-TAI value returned is for the period leading up to the leap second. If the date is for a day which begins as a leap second ends, the UTC-TAI returned is for the period following the leap second.
3) The day number must be in the normal calendar range, for example 1 through 30 for April. The "almanac" convention of allowing such dates as January 0 and December 32 is not supported in this routine, in order to avoid confusion near leap seconds.
4) The fraction of day is used only for dates before the introduction of leap seconds, the first of which occurred at the end of 1971. It is tested for validity ( 0 to 1 is the valid range) even if not used; if invalid, zero is used and status \(J=-4\) is returned. For many applications, setting \(F D\) to zero is acceptable; the resulting error is always less than 3 ms (and occurs only pre-1972).
5) The status value returned in the case where there are multiple errors refers to the first error detected. For example, if the month and day are 13 and 32 respectively, \(J=-2\) (bad month) will be returned.
6) In cases where a valid result is not available, zero is returned.

References:
1) For dates from 1961 January 1 onwards, the expressions from the file ftp://maia.usno.navy.mil/ser7/tai-utc.dat are used.
2) The 5 ms timestep at 1961 January 1 is taken from 2.58 .1 (p87) of the 1992 Explanatory Supplement.

Called:
iau_CAL2JD Gregorian calendar to Julian Day number
```

 DOUBLE PRECISION FUNCTION iau_DTDB (DATE1, DATE2,
 : (an
 *+
D T D B
I a U D B
*

* An approximation to TDB-TT, the difference between barycentric
* dynamical time and terrestrial time, for an observer on the Earth.
*
* The different time scales - proper, coordinate and realized - are
* related to each other:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Adopted values for the various constants can be found in the IERS
* Conventions (McCarthy \& Petit 2003).
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given:
Given:
UT d
ELONG d longitude (east positive, radians)
U d distance from Earth spin axis (km)
V d distance north of equatorial plane (km)
Returned:
iau_DTDB d TDB-TT (seconds)
Notes:

1) The date DATE1+DATE2 is a Julian Date, apportioned in any
convenient way between the arguments DATE1 and DATE2. For
example, JD(TDB)=2450123.7 could be expressed in any of these
ways, among others:
DATE1
$2450123.7 D 0$
$2451545 D 0$
$2400000.5 D 0$
5D0
2450123.5D0
The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the
```
argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.

Although the date is, formally, barycentric dynamical time (TDB), the terrestrial dynamical time (TT) can be used with no practical effect on the accuracy of the prediction.
2) \(T T\) can be regarded as a coordinate time that is realized as an offset of 32.184 s from International Atomic Time, TAI. TT is a specific linear transformation of geocentric coordinate time TCG, which is the time scale for the Geocentric Celestial Reference System, GCRS.
3) TDB is a coordinate time, and is a specific linear transformation of barycentric coordinate time TCB, which is the time scale for the Barycentric Celestial Reference System, BCRS.
4) The difference TCG-TCB depends on the masses and positions of the bodies of the solar system and the velocity of the Earth. It is dominated by a rate difference, the residual being of a periodic character. The latter, which is modeled by the present routine, comprises a main (annual) sinusoidal term of amplitude approximately 0.00166 seconds, plus planetary terms up to about 20 microseconds, and lunar and diurnal terms up to 2 microseconds. These effects come from the changing transverse Doppler effect and gravitational red-shift as the observer (on the Earth's surface) experiences variations in speed (with respect to the BCRS) and gravitational potential.
5) TDB can be regarded as the same as TCB but with a rate adjustment to keep it close to TT, which is convenient for many applications. The history of successive attempts to define TDB is set out in Resolution 3 adopted by the IAU General Assembly in 2006, which defines a fixed TDB(TCB) transformation that is consistent with contemporary solar-system ephemerides. Future ephemerides will imply slightly changed transformations between TCG and TCB, which could introduce a linear drift between TDB and TT; however, any such drift is unlikely to exceed 1 nanosecond per century.
6) The geocentric TDB-TT model used in the present routine is that of Fairhead \& Bretagnon (1990), in its full form. It was originally supplied by Fairhead (private communications with P.T.Wallace, 1990) as a Fortran subroutine. The present routine contains an adaptation of the Fairhead code. The numerical results are essentially unaffected by the changes, the differences with respect to the Fairhead \& Bretagnon original being at the 1D-20 s level.

The topocentric part of the model is from Moyer (1981) and Murray (1983), with fundamental arguments adapted from Simon et al. 1994. It is an approximation to the expression ( v / c ) . ( r / c ), where v is the barycentric velocity of the Earth, \(r\) is the geocentric position of the observer and c is the speed of light.

By supplying zeroes for \(U\) and \(V\), the topocentric part of the model can be nullified, and the routine will return the Fairhead \& Bretagnon result alone.
7) During the interval 1950-2050, the absolute accuracy is better than +/- 3 nanoseconds relative to time ephemerides obtained by direct numerical integrations based on the JPL DE405 solar system ephemeris.
8) It must be stressed that the present routine is merely a model, and that numerical integration of solar-system ephemerides is the definitive method for predicting the relationship between TCG and TCB and hence between TT and TDB.

References:
Fairhead, L., \& Bretagnon, P., Astron.Astrophys., 229, 240-247
(1990).

IAU 2006 Resolution 3.
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

Moyer, T.D., Cel.Mech., 23, 33 (1981).
Murray, C.A., Vectorial Astrometry, Adam Hilger (1983).
Seidelmann, P.K. et al., Explanatory Supplement to the Astronomical Almanac, Chapter 2, University Science Books (1992).

Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. \& Laskar, J., Astron.Astrophys., 282, 663-683 (1994).
```

*+

* - - - _ - _ - _ _ -
* i a u_D T F 2 D
*
* Encode date and time fields into 2-part Julian Date (or in the case
* of UTC a quasi-JD form that includes special provision for leap
* seconds).
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given:
SCALE C*(*) time scale ID (Note 1)
IY,IM,ID i year, month, day in Gregorian calendar (Note 2)
IHR,IMN i hour, minute
SEC d seconds
Returned:
D1,D2 d 2-part Julian Date (Notes 3,4)
J i status: +3 = both of next two
+2 = time is after end of day (Note 5)
+1 = dubious year (Note 6)
O = OK
-1 = bad year
-2 = bad month
-3 = bad day
-4 = bad hour
-5 = bad minute
-6 = bad second (<0)
Notes:

1) SCALE identifies the time scale. Only the value 'UTC' (in upper
case) is significant, and enables handling of leap seconds (see
Note 4).

2) For calendar conventions and limitations, see iau_CAL2JD.
3) The sum of the results, D1+D2, is Julian Date, where normally D1
is the Julian Day Number and D2 is the fraction of a day. In the
case of UTC, where the use of JD is problematical, special
conventions apply: see the next note.
4) JD cannot unambiguously represent UTC during a leap second unless
special measures are taken. The SOFA internal convention is that
the quasi-JD day represents UTC days whether the length is 86399,
86400 or 86401 SI seconds.
5) The warning status "time is after end of day" usually means that the SEC argument is greater than 60D0. However, in a day ending in a leap second the limit changes to 61D0 (or 59D0 in the case of a negative leap second).
6) The warning status "dubious year" flags UTCs that predate the introduction of the time scale and that are too far in the future to be trusted. See iau_DAT for further details.
7) Only in the case of continuous and regular time scales (TAI, TT, TCG, TCB and TDB) is the result D1+D2 a Julian Date, strictly speaking. In the other cases (UT1 and UTC) the result must be used with circumspection; in particular the difference between two such results cannot be interpreted as a precise time interval.
Called:
iau_CAL2JD Gregorian calendar to JD
iau_DAT
delta(AT) $=$ TAI-UTC
```
* iau_JD2CAL JD to Gregorian calendar
\(\star\)
\(\star\)
\(\star\)
-
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical model.
*
* Given:
        DATE1,DATE2 \(d\) TT as a 2-part Julian Date (Note 1)
        EPSA d mean obliquity (Note 2)
        DPSI d nutation in longitude (Note 3)
    Returned:
        iau_EE00 d equation of the equinoxes (Note 4)
    Notes:
1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
        convenient way between the two arguments. For example,
        \(J D(T T)=2450123.7\) could be expressed in any of these ways,
        among others:

\section*{DATE1}
\begin{tabular}{cc}
\(2450123.7 D 0\) & \(0 D 0\) \\
\(2451545 D 0\) & \(-1421.3 D 0\) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) \\
\(2450123.5 D 0\) & \(0.2 D 0\)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The obliquity, in radians, is mean of date.
3) The result, which is in radians, operates in the following sense:

Greenwich apparent \(S T=G M S T+\) equation of the equinoxes
4) The result is compatible with the IAU 2000 resolutions. For further details, see IERS Conventions 2003 and Capitaine et al. (2002).

Called:
iau_EECTOO equation of the equinoxes complementary terms
References:
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 2000 definition of UT1", Astronomy \& Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)
* i a u_E E O O A
* _ _ _ _- _ _ _ _ -
\(\star\)
* Equation of the equinoxes, compatible with IAU 2000 resolutions.
\(\star\)
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
*
* Given:
* DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
* Returned:
        iau_EEOOA \(d\) equation of the equinoxes (Note 2)
    Notes:
1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
        convenient way between the two arguments. For example,
        JD (TT) \(=2450123.7\) could be expressed in any of these ways,
        among others:
\begin{tabular}{ccl} 
DATE1 & DATE2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The result, which is in radians, operates in the following sense:

Greenwich apparent \(S T=G M S T+\) equation of the equinoxes
3) The result is compatible with the IAU 2000 resolutions. For further details, see IERS Conventions 2003 and Capitaine et al. (2002).

Called:
iau_PRO0 IAU 2000 precession adjustments iau_OBL80 mean obliquity, IAU 1980 iau_NUT00A nutation, IAU 2000A iau_EEOO equation of the equinoxes, IAU 2000

References:
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
implement the IAU 2000 definition of UT1", Astronomy \& Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)
\(\star\)
Returned:
        iau_EEOOB d equation of the equinoxes (Note 2)
Notes:
        iau_OBL80 mean obliquity, IAU 1980
        iau_NUT00B nutation, IAU 2000B
        iau_EEOO equation of the equinoxes, IAU 2000
```

References:

```

Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 2000 definition of UT1", Astronomy \& Astrophysics, 406, 1135-1149 (2003)

McCarthy, D.D. \& Luzum, B.J., "An abridged model of the precession-nutation of the celestial pole", Celestial Mechanics \& Dynamical Astronomy, 85, 37-49 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)
* i a u_E E 06 A
* _ _ _ _-_ _ _ _ -
\(\star\)
* Equation of the equinoxes, compatible with IAU 2000 resolutions and
* IAU 2006/2000A precession-nutation.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given:
DATE1,DATE2 \(d \quad\) TT as a 2-part Julian Date (Note 1)
* Returned:
\(*\)
\(\star\)
*
\(\star\)
*
*
\(\star\)
*
*
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
*
*
\(\star\)
*
*
\(\star\)
\(\star\)
Reference:
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003),
IERS Technical Note No. 32, BKG
* i a u
* i a u_E ECTOO
\(\star\)
\(\star\)
* Equation of the equinoxes complementary terms, consistent with
* IAU 2000 resolutions.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical model.
\(\star\)
* Given:
    DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
*
* Returned:
\(\star\)
*
*
\(\star\)
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
\begin{tabular}{ll} 
iau_FALP03 & mean anomaly of the Sun \\
iau_FAF03 & mean argument of the latitude of the Moon \\
iau_FAD03 & mean elongation of the Moon from the Sun \\
iau_FAOM03 & mean longitude of the Moon's ascending node \\
iau_FAVE03 & mean longitude of Venus \\
iau_FAE03 & mean longitude of Earth \\
iau_FAPA03 & general accumulated precession in longitude
\end{tabular}
References:
Capitaine, N. \& Gontier, A.-M., Astron. Astrophys., 275,
645-650 (1993)
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
implement the IAU 2000 definition of UT1", Astronomy \&
Astrophysics, 406, 1135-1149 (2003)
IAU Resolution C7, Recommendation 3 (1994)
    McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
    IERS Technical Note No. 32, BKG (2004)
```

* Status: canonical.

```
* Given:
* N Given: \(\quad\) ellipsoid identifier (Note 1)
* Returned:
* A d equatorial radius (meters, Note 2)
* \(\quad \mathrm{F}\)
    J
flattening (Note 2)
status: \(0=O K\)
    \(-1=\) illegal identifier (Note 3)
    Notes:
    1) The identifier \(N\) is a number that specifies the choice of
        reference ellipsoid. The following are supported:
            N ellipsoid
            1 WGS 84
            2 GRS80
            WGS 72
        The number N has no significance outside the SOFA software.
    2) The ellipsoid parameters are returned in the form of equatorial
        radius in meters (A) and flattening (F). The latter is a number
        around 0.00335, i.e. around 1/298.
    3) For the case where an unsupported \(N\) value is supplied, zero \(A\) and
        \(F\) are returned, as well as error status.
    References:
        Department of Defense World Geodetic System 1984, National Imagery
        and Mapping Agency Technical Report 8350.2, Third Edition, p3-2.
        Moritz, H., Bull. Geodesique 66-2, 187 (1992).
        The Department of Defense World Geodetic System 1972, World
        Geodetic System Committee, May 1974.
        Explanatory Supplement to the Astronomical Almanac,
        P. Kenneth Seidelmann (ed), University Science Books (1992),
        p220.
- - - - - - - - -
* i a u_EOO6A
* _ _ _ _- _ _ _ _ -
\(\star\)
* Equation of the origins, IAU 2006 precession and IAU 2000A nutation.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
```

Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981

```
* Equation of the origins, given the classical NPB matrix and the
* quantity s.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
* Given:
* RNPB
* S
RNPB \(d(3,3) \quad\) classical nutation \(x\) precession \(x\) bias matrix
\(S\) d the quantity \(s\) (the CIO locator)
* Returned:
Wallace, P. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981
* i a u \(\quad\) E P B
* _ _ _ _ _ _ _ -
*
* Julian Date to Besselian Epoch.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
* DJ1,DJ2 d Julian Date (see note)
*
* The result is the Besselian Epoch.
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
    正
    manner, which is designed to preserve time resolution. The
    Julian Date is available as a single number by adding DJ1 and
        DJ2. The maximum resolution is achieved if DJ1 is 2451545D0
        (J2000.0) .
    Reference:
        Lieske, J.H., 1979, Astron.Astrophys. 73, 282.
        EPB d Besselian Epoch (e.g. 1957.3D0)
\(\star\)
* Returned:
        DJM0 d MJD zero-point: always 2400000.5
        DJM d Modified Julian Date
\(\star\)
\(\star\)
    Note:
        The Julian Date is returned in two pieces, in the usual SOFA
        manner, which is designed to preserve time resolution. The
        Julian Date is available as a single number by adding DJMO and
        DJM.
* Reference:
\(\star\)
\(\star\)
\(\star\)
\(\star\)
        Lieske, J.H., 1979, Astron.Astrophys. 73, 282.
* i a
* i a u - E P J
*
* Julian Date to Julian Epoch.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
* DJ1,DJ2 d Julian Date (see note)
*
* The result is the Julian Epoch.
*
*
\(\star\)
\(\star\)
* Reference:
\(*\)
\(*\)
* Lieske, J.H., 1979, Astron.Astrophys. 73, 282.
\(\star\)
\(\star\)
\(\star\)
    mar
    manner, which is designed to preserve time resolution. The
    Julian Date is available as a single number by adding DJ1 and
        DJ2. The maximum resolution is achieved if DJ1 is 2451545D0
        (J2000.0).

\section*{*}
* Status: support routine.

\section*{*}
* Given:
* EPJ d Julian Epoch (e.g. 1996.8D0)
*
* Returned:
* DJM0 d MJD zero-point: always 2400000.5
* DJM d Modified Julian Date
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
*
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
* Reference:
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
    Note:
        The Julian Date is returned in two pieces, in the usual SOFA
        manner, which is designed to preserve time resolution. The
        Julian Date is available as a single number by adding DJMO and
        DJM.
        Lieske, J.H., 1979, Astron.Astrophys. 73, 282.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
        DATE2 d TDB date part B (Note 1)
Returned:
    PVH \(\quad d(3,2)\) heliocentric Earth position/velocity (AU,AU/day)
    PVB d(3,2) barycentric Earth position/velocity (AU,AU/day)
    JSTAT i status: \(0=0 K\)
                                    \(+1=\) warning: date outside 1900-2100 AD

Notes:
1) The epoch EPOCH1+EPOCH2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD (TDB) \(=2450123.7\) could be expressed in any of these ways, among others:

\section*{EPOCH1}

EPOCH2
\begin{tabular}{ccl}
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience. However, the accuracy of the result is more likely to be limited by the algorithm itself than the way the epoch has been expressed.
2) On return, the arrays \(P V H\) and \(P V B\) contain the following:
\begin{tabular}{|c|c|c|c|}
\hline \(\operatorname{PVH}(1,1)\) & x & \} & \\
\hline \(\operatorname{PVH}(2,1)\) & Y & \} & heliocentric position, AU \\
\hline PVH ( 3,1 ) & z & \} & \\
\hline PVH (1, 2) & xdot & \} & \\
\hline \(\operatorname{PVH}(2,2)\) & ydot & \} & heliocentric velocity, AU/d \\
\hline PVH \((3,2)\) & zdot & \} & \\
\hline \(\operatorname{PVB}(1,1)\) & X & \} & \\
\hline \(\operatorname{PVB}(2,1)\) & Y & \} & barycentric position, AU \\
\hline \(\operatorname{PVB}(3,1)\) & z & \} & \\
\hline \(\operatorname{PVB}(1,2)\) & xdot & \} & \\
\hline \(\operatorname{PVB}(2,2)\) & ydot & & barycentric velocity, AU/d \\
\hline \(\operatorname{PVB}(3,2)\) & zdot & & \\
\hline
\end{tabular}

The vectors are with respect to the Barycentric Celestial Reference System. The time unit is one day in TDB.
3) The routine is a SIMPLIFIED SOLUTION from the planetary theory VSOP2000 (X. Moisson, P. Bretagnon, 2001, Celes. Mechanics \&
* Dyn. Astron., 80, 3/4, 205-213) and is an adaptation of original
    Fortran code supplied by P. Bretagnon (private comm., 2000).
    4) Comparisons over the time span \(1900-2100\) with this simplified
        solution and the JPL DE405 ephemeris give the following results:
\begin{tabular}{lrrl} 
Heliocentric: & RMS & max & \\
position error & 3.7 & 11.2 & km \\
velocity error & 1.4 & 5.0 & \(\mathrm{~mm} / \mathrm{s}\) \\
& & & \\
Barycentric: & & & \\
position error & 4.6 & 13.4 & km \\
velocity error & 1.4 & 4.9 & \(\mathrm{~mm} / \mathrm{s}\)
\end{tabular}
    Comparisons with the JPL DE406 ephemeris show that by 1800 and
    2200 the position errors are approximately double their 1900-2100
    size. By 1500 and 2500 the deterioration is a factor of 10 and by
    1000 and 3000 a factor of 60 . The velocity accuracy falls off at
    about half that rate.
Returned:
        iau_EQEQ94 d equation of the equinoxes (Note 2)
Notes:
* 1) The date DATE1+DATE2 is a Julian Date, apportioned in any
        convenient way between the two arguments. For example,
        JD (TDB) \(=2450123.7\) could be expressed in any of these ways,
        among others:
\begin{tabular}{ccl} 
DATE1 & DATE2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The result, which is in radians, operates in the following sense:

Greenwich apparent \(S T=G M S T+\) equation of the equinoxes
Called:
iau_NUT80 nutation, IAU 1980
iau_OBL80 mean obliquity, IAU 1980
iau_ANPM normalize angle into range +/- pi
References:
IAU Resolution C7, Recommendation 3 (1994)
Capitaine, N. \& Gontier, A.-M., Astron. Astrophys., 275, 645-650 (1993) convenient way between the arguments DJ1 and DJ2. For example, JD (UT1) \(=2450123.7\) could be expressed in any of these ways, among others:
\begin{tabular}{ccl} 
DJ1 & DJ2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 and MJD methods are good compromises between resolution and convenience. The date \& time method is best matched to the algorithm used: maximum accuracy (or, at least, minimum noise) is delivered when the DJ1 argument is for Ohrs UT1 on the day in question and the DJ2 argument lies in the range 0 to 1 , or vice versa.
2) The algorithm is adapted from Expression 22 of Capitaine et al. 2000. The time argument has been expressed in days directly, and, to retain precision, integer contributions have been eliminated. The same formulation is given in IERS Conventions (2003), Chap. 5, Eq. 14.

Called: iau_ANP normalize angle into range 0 to 2pi

References:
Capitaine N., Guinot B. and McCarthy D.D, 2000, Astron. Astrophys., 355, 398-405. McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)
* - - _ - _ - - _ - -
* i a u_FADO3
* _ _ _ _ _ _ _ _ _ -
*
* Fundamental argument, IERS Conventions (2003):
* mean elongation of the Moon from the Sun.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical model.
* Given:
* T . d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
* iau_FAD03 d D, radians (Note 2)
* Notes:
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use TT,
* which makes no significant difference.
\(\star\)
* 2) The expression used is as adopted in IERS Conventions (2003) and
* is from Simon et al. (1994).
*
* References:
*
\(\star\)
\(\star\)
    carthy, D. D., Petit, G. (eds.), IER
    Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
    Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683
    T d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
* Raurifo
    iau_FAE03 d mean longitude of Earth, radians (Note 2)
*
Notes:
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use TT,
*
*
* 2) The expression used is as adopted in IERS Conventions (2003) and
*
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
* - _ - - - - - - - -
* \(\quad\) i a u_FAFO 3
* - - _ _ _ - _ - - -
*
* Fundamental argument, IERS Conventions (2003):
* mean longitude of the Moon minus mean longitude of the ascending
* node.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical model.
* Given:
* \(\quad\) T \(\quad\) d \(\quad\) JB, Julian centuries since J2000.0 (Note 1)
* Returned:
* iau_FAF03 d F, radians (Note 2)
*
\(\star\) Notes:
*
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use \(T T\),
*
*
* 2) The expression used is as adopted in IERS Conventions (2003) and
* is from Simon et al. (1994).
\(\star\)
\(\star\)
\(*\)
\(*\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
    McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
    IERS Technical Note No. 32, BKG (2004)
    Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
    Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683
    T d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
        iau_FAJU03 d mean longitude of Jupiter, radians (Note 2)
        comes from Souchay et al. (1999) after Simon et al. (1994).
* References:
    McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
    IERS Technical Note No. 32, BKG (2004)
    Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
    Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683
    Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
    Astron.Astrophys.Supp.Ser. 135, 111
* - - - - - - - - - -
* i a u_FALO 3
* _ _ _ _ _ _ _ _ _ -
*
* Fundamental argument, IERS Conventions (2003):
* mean anomaly of the Moon.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
\(\star\)
* Given:
* T ( d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
* iau_FAL03 d l, radians (Note 2)
* Notes:
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use \(T\),
* which makes no significant difference.
*
* 2) The expression used is as adopted in IERS Conventions (2003) and
* is from Simon et al. (1994).
*
* References:
*
\(\star\)
\(\star\)
    carthy, D. D., Petit, G. (eds.), IER
    Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
    Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683
        iau_FALP03 d \(l^{\prime}\), radians (Note 2)
* a u_FAMAO3
\(\star\)
\(\star\)
* Fundamental argument, IERS Conventions (2003):
* mean longitude of Mars.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: canonical model.
* Given:
    T d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
* Notes
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use TT,
\(\star\)
*
* 2) The expression used is as adopted in IERS Conventions (2003) and
\(\star\)
\(\star\)
*
* Fundamental argument, IERS Conventions (2003):
* mean longitude of Mercury.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
*
* Given:

T d TDB, Julian centuries since J2000.0 (Note 1)
\(\begin{array}{ll}\star \\ * & \text { Returned: }\end{array}\)
* iau_FAME03 d mean longitude of Mercury, radians (Note 2)

Notes:
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use TT, which makes no significant difference.
2) The expression used is as adopted in IERS Conventions (2003) and comes from Souchay et al. (1999) after Simon et al. (1994).

References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astron.Astrophys.Supp.Ser. 135, 111
*
* Fundamental argument, IERS Conventions (2003):
* mean longitude of Neptune.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.

\section*{*}
*
* Given:
* T d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
*
iau_FANE03 d mean longitude of Neptune, radians (Note 2)
* Notes:
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use TT, which makes no significant difference.
2) The expression used is as adopted in IERS Conventions (2003) and is adapted from Simon et al. (1994).

References:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683
*
* Fundamental argument, IERS Conventions (2003):
* mean longitude of the Moon's ascending node.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical model.
* Given:
* T d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
*
iau_FAOM03 d Omega, radians (Note 2)
* Notes:
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use TT,
        iau_FAPA03 d general precession in longitude, radians (Note 2)
* Notes:
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use TT,
    which makes no significant difference.
    2) The expression used is as adopted in IERS Conventions (2003). It
        is taken from Kinoshita \& Souchay (1990) and comes originally from
        Lieske et al. (1977).
    References:
        Kinoshita, H. and Souchay J. 1990, Celest.Mech. and Dyn.Astron.
        48, 187
        Lieske, J.H., Lederle, T., Fricke, W. \& Morando, B. 1977,
        Astron.Astrophys. 58, 1-16
        McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
        IERS Technical Note No. 32, BKG (2004)
    T d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
        iau_FASA03 d mean longitude of Saturn, radians (Note 2)
        comes from Souchay et al. (1999) after Simon et al. (1994).
* References:
    McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
    IERS Technical Note No. 32, BKG (2004)
    Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
    Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683
    Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
    Astron.Astrophys.Supp.Ser. 135, 111
*
* Fundamental argument, IERS Conventions (2003):
* mean longitude of Uranus.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical model.
* Given:
* T d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
*
iau_FAUR03 d mean longitude of Uranus, radians (Note 2)
* Notes:
* 1) Though \(T\) is strictly TDB, it is usually more convenient to use TT,
    T d TDB, Julian centuries since J2000.0 (Note 1)
* Returned:
        iau_FAVE03 d mean longitude of Venus, radians (Note 2) comes from Souchay et al. (1999) after Simon et al. (1994).
```

References:

```

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999, Astron.Astrophys.Supp.Ser. 135, 111
```

 SUBROUTINE iau_FK52H (R5, D5, DR5, DD5, PX5, RV5,
 : RH, DH, DRH, DDH, PXH, RVH)
 *+
a u F K 5 2 H
*

* Transform FK5 (J2000.0) star data into the Hipparcos system.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given (all FK5, equinox J2000.0, epoch J2000.0):
* R5 d RA (radians)
* D5 d Dec (radians)
* DR5 d proper motion in RA (dRA/dt, rad/Jyear)
* DD5 d proper motion in Dec (dDec/dt, rad/Jyear)
* PX5 d parallax (arcsec)
* RV5 d radial velocity (km/s, positive = receding)
* Returned (all Hipparcos, epoch J2000.0):
* RH d RA (radians)
* DH d Dec (radians)
* DRH d proper motion in RA (dRA/dt, rad/Jyear)
 * DDH PMH proper motion in Dec (dDec/dt, rad/Jyear)
RVH d radial velocity (km/s, positive = receding)
Notes:

1) This routine transforms FK5 star positions and proper motions into
the system of the Hipparcos catalog.
2) The proper motions in RA are dRA/dt rather than cos(Dec)*dRA/dt,
and are per year rather than per century.
3) The FK5 to Hipparcos transformation is modeled as a pure rotation
and spin; zonal errors in the FK5 catalog are not taken into
account.
4) See also iau_H2FK5, iau_FK5HZ, iau_HFK5Z.
Called:
iau_STARPV star catalog data to space motion pv-vector
iau_FK5HIP FK5 to Hipparcos rotation and spin
iau_RXP product of r-matrix and p-vector
iau_PXP vector product of two p-vectors
iau_PPP p-vector plus p-vector
iau_PVSTAR space motion pv-vector to star catalog data
Reference:
F.Mignard \& M.Froeschle, Astron. Astrophys. 354, 732-739 (2000).
```

\section*{Notes:}
1) This routine models the FK5 to Hipparcos transformation as a pure rotation and spin; zonal errors in the FK5 catalogue are not taken into account.
2) The r-matrix R5H operates in the sense:
```

 P_Hipparcos = R5H x P_FK5
    ```
    where P_FK5 is a p-vector in the FK5 frame, and P_Hipparcos is
    the equivalent Hipparcos \(p\)-vector.
3) The r-vector \(S 5 H\) represents the time derivative of the FK5 to Hipparcos rotation. The units are radians per year (Julian, TDB).

Called: iau_RV2M r-vector to r-matrix

Reference: F.Mignard \& M.Froeschle, Astron. Astrophys. 354, 732-739 (2000).
\(\star\)
\(\star\)
\(\star\)
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
D5 d FK5 Dec (radians), equinox J2000.0, at date
        DATE1,DATE2 d TDB date (Notes 1,2)
Returned:
RH d Hipparcos RA (radians)
DH d Hipparcos Dec (radians)

\section*{Notes:}
1) This routine converts a star position from the FK5 system to the Hipparcos system, in such a way that the Hipparcos proper motion is zero. Because such a star has, in general, a non-zero proper motion in the FK5 system, the routine requires the date at which the position in the FK5 system was determined.
2) The date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, \(J D(T D B)=2450123.7\) could be expressed in any of these ways, among others:

\section*{DATE1}
\begin{tabular}{cc}
\(2450123.7 D 0\) & \(0 D 0\) \\
\(2451545 D 0\) & \(-1421.3 D 0\) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) \\
\(2450123.5 D 0\) & \(0.2 D 0\)
\end{tabular}
2450123.5D0

\section*{DATE2}
\[
\begin{gathered}
-1421.3 \mathrm{DO} \\
50123.2 \mathrm{D} 0 \\
0.2 \mathrm{D} 0
\end{gathered}
\]
(JD method)
(J2000 method)
(MJD method)
(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
3) The FK5 to Hipparcos transformation is modeled as a pure rotation and spin; zonal errors in the FK5 catalogue are not taken into account.
4) The position returned by this routine is in the Hipparcos reference system but at date DATE1+DATE2.
5) See also iau_FK52H, iau_H2FK5, iau_HFK5Z.

Called:
iau_S2C iau_FK5HIP iau_SXP iau_RV2M iau_TRXP iau_PXP iau_C2S iau_ANP
spherical coordinates to unit vector
FK5 to Hipparcos rotation and spin multiply p-vector by scalar \(r\)-vector to r-matrix
                                    product of transpose of \(r\)-matrix and \(p\)-vector
                                    vector product of two p-vectors
                                    vector product of two
p-vector to spherical
                                    normalize angle into range 0 to 2 pi
Reference:
        F.Mignard \& M.Froeschle, Astron. Astrophys. 354, 732-739 (2000).
\[
\begin{aligned}
& { }^{*} \\
& { }^{\prime}
\end{aligned}
\]
```

* Status: support routine.

```
* Given:
* Given.
    GAMB d \(F-W\) angle gamma_bar (radians)
    PHIB d \(F-W\) angle phi_bar (radians)
    PSI d \(\mathrm{F}-\mathrm{W}\) angle psi (radians)
    EPS d \(\quad\) F-W angle epsilon (radians)
    Returned:
        \(R \quad d(3,3)\) rotation matrix
    Notes:
    1) Naming the following points:
        e = J2000.0 ecliptic pole,
        \(\mathrm{p}=\) GCRS pole,
        \(\mathrm{E}=\) ecliptic pole of date,
        and \(P=C I P\),
        the four Fukushima-Williams angles are as follows:
        GAMB \(=\) gamma \(=\mathrm{epE}\)
        PHIB \(=\) phi \(=\mathrm{pE}\)
        PSI = psi = pEP
        EPS = epsilon = EP
    2) The matrix representing the combined effects of frame bias,
        precession and nutation is:
            \(N \times P \times B=R \_1(-E P S) \cdot R \_3(-P S I) \cdot R \_1(P H I B) \cdot R \_3(G A M B)\)
    3) Three different matrices can be constructed, depending on the
        supplied angles:
        - To obtain the nutation \(x\) precession \(x\) frame bias matrix,
        generate the four precession angles, generate the nutation
        components and add them to the psi_bar and epsilon_A angles,
        and call the present routine.
        - To obtain the precession \(x\) frame bias matrix, generate the
        four precession angles and call the present routine.
        - To obtain the frame bias matrix, generate the four precession
        angles for date J2000.0 and call the present routine.
        The nutation-only and precession-only matrices can if necessary
        be obtained by combining these three appropriately.
    Called:
        iau_IR initialize r-matrix to identity
        iau_RZ rotate around Z-axis
        iau_RX rotate around X-axis
    Reference:
    Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351
        GAMB d \(F-W\) angle gamma_bar (radians)
        PHIB d \(\quad\) F-W angle phi_bar (radians)
        PSI d F-W angle psi (radians)
        EPS d \(F-W\) angle epsilon (radians)
    Returned:
        X,Y d CIP X,Y ("radians")
    Notes:
1) Naming the following points:
    and \(P=C I P\),
    the four Fukushima-Williams angles are as follows:
        GAMB \(=\) gamma \(=\mathrm{epE}\)
        PHIB \(=\) phi \(=\mathrm{pE}\)
        PSI = psi \(=\) pEP
        EPS = epsilon = EP
    2) The matrix representing the combined effects of frame bias,
        precession and nutation is:
            \(N \times P \times B=R \_1(-E P S A) \cdot R \_3(-P S I) \cdot R \_1(P H I B) \cdot R \_3\) (GAMB)
        \(X, Y\) are elements \((3,1)\) and \((3,2)\) of the matrix.
Called:
        iau_FW2M \(F-W\) angles to r-matrix
        iau_BPN2XY extract CIP \(X, Y\) coordinates from NPB matrix
    Reference:
        Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351
```

 SUBROUTINE iau_GC2GD (N, XYZ, ELONG, PHI, HEIGHT, J)
    ```
\(*+\)
\(\star\)
\(*\)
* i a u_GC2GD
* _ _ _ _ _ _ _ _ _
*
* Transform geocentric coordinates to geodetic using the specified
* reference ellipsoid.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
Status: canonical transformation.
* Given:
        \(N\) i ellipsoid identifier (Note 1)
        XYZ d(3) geocentric vector (Note 2)
Returned:
        ELONG d longitude (radians, east +ve)
        PHI d latitude (geodetic, radians, Note 3)
        HEIGHT d height above ellipsoid (geodetic, Notes 2,3)
        J
    status: \(0=O K\)
        \(-1=\) illegal identifier (Note 3)
        \(-2=\) internal error (Note 3)
    Notes:
    1) The identifier \(N\) is a number that specifies the choice of
        reference ellipsoid. The following are supported:
            N ellipsoid
            1 WGS8 4
                GRS 80
                WGS 72
    The number N has no significance outside the SOFA software.
    2) The geocentric vector (XYZ, given) and height (HEIGHT, returned)
    are in meters.
    3) An error status \(J=-1\) means that the identifier \(N\) is illegal. An
        error status \(J=-2\) is theoretically impossible. In all error
        cases, PHI and HEIGHT are both set to -1D9.
    4) The inverse transformation is performed in the routine iau_GD2GC.
Called:
    iau_EFORM Earth reference ellipsoids
    iau_GC2GDE geocentric to geodetic transformation, general
A d equatorial radius (Notes 2,4)
F d flattening (Note 3)
XYZ d(3) geocentric vector (Note 4)

Returned:
ELONG d longitude (radians, east +ve)
PHI d latitude (geodetic, radians)
HEIGHT d height above ellipsoid (geodetic, Note 4)

J i status: \(0=0 K\)
\(-1=\) illegal \(F\)
\(-2=\) illegal \(A\)
Notes:
1) This routine is closely based on the GCONV \(2 H\) subroutine by Toshio Fukushima (see reference).
2) The equatorial radius, \(A\), can be in any units, but meters is the conventional choice.
3) The flattening, \(F\), is (for the Earth) a value around 0.00335 , i.e. around 1/298.
4) The equatorial radius, \(A\), and the geocentric vector, XYZ, must be given in the same units, and determine the units of the returned height, HEIGHT.
5) If an error occurs ( \(J<0)\), ELONG, PHI and HEIGHT are unchanged.
6) The inverse transformation is performed in the routine iau_GD2GCE.
7) The transformation for a standard ellipsoid (such as WGS84) can more conveniently be performed by calling iau_GC2GD, which uses a numerical code (1 for \(W G S 84\) ) to identify the required \(A\) and \(F\) values.

Reference:
Fukushima, T., "Transformation from Cartesian to geodetic coordinates accelerated by Halley's method", J.Geodesy (2006) 79: 689-693
Status: canonical transformation.
* Given:
    N i ellipsoid identifier (Note 1)
    ELONG d longitude (radians, east +ve)
    PHI d latitude (geodetic, radians, Note 3)
    HEIGHT d height above ellipsoid (geodetic, Notes 2,3)
Returned:
        XYZ d(3) geocentric vector (Note 2)
        \(J \quad i \quad\) status: \(0=O K\)
                                \(-1=\) illegal identifier (Note 3)
                        \(-2=\) illegal case (Note 3)
    Notes:
    1) The identifier \(N\) is a number that specifies the choice of
        reference ellipsoid. The following are supported:
            N ellipsoid
            1 WGS8 4
                GRS 80
                WGS 72
        The number N has no significance outside the SOFA software.
    2) The height (HEIGHT, given) and the geocentric vector (XYZ,
        returned) are in meters.
    3) No validation is performed on the arguments ELONG, PHI and HEIGHT.
        An error status \(J=-1\) means that the identifier \(N\) is illegal. An
        error status \(J=-2\) protects against cases that would lead to
        arithmetic exceptions. In all error cases, XYZ is set to zeros.
    4) The inverse transformation is performed in the routine iau_GC2GD.
Called:
    iau_EFORM Earth reference ellipsoids
    iau_GD2GCE geodetic to geocentric transformation, general
    iau_ZP zero p-vector
* i a u_G D 2 GC E
* _ _ _ _ _ _ _ _ _ _ -
*
* Transform geodetic coordinates to geocentric for a reference
* ellipsoid of specified form.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
    A d equatorial radius (Notes 1,4)
    F
    flattening (Notes 2,4)
    ELONG d longitude (radians, east +ve)
    ELONG d longitude (radians, east +ve)
    PHI d latitude (geodetic, radians, Note 4)
    HEIGHT d height above ellipsoid (geodetic, Notes 3,4)
Returned:
    XYZ d(3) geocentric vector (Note 3)
    J i status: \(0=0 K\)
    \(-1=\) illegal case (Note 4)
    Notes:
    1) The equatorial radius, \(A\), can be in any units, but meters is
    the conventional choice.
2) The flattening, \(F\), is (for the Earth) a value around 0.00335 ,
    i.e. around 1/298.
3) The equatorial radius, \(A\), and the height, HEIGHT, must be
    given in the same units, and determine the units of the
    returned geocentric vector, XYZ.
4) No validation is performed on individual arguments. The error
        status \(J=-1\) protects against (unrealistic) cases that would lead
        to arithmetic exceptions. If an error occurs, XYZ is unchanged.
5) The inverse transformation is performed in the routine iau_GC2GDE.
6) The transformation for a standard ellipsoid (such as WGS84) can
    more conveniently be performed by calling iau_GD2GC, which uses a
    numerical code (1 for WGS84) to identify the required \(A\) and \(F\)
    values.
References:
    Green, R.M., Spherical Astronomy, Cambridge University Press,
    (1985) Section 4.5, p96.
    Explanatory Supplement to the Astronomical Almanac,
    P. Kenneth Seidelmann (ed), University Science Books (1992),
    Section 4.22, p202.
* i a u_GMSTOO
* - _ _ _- _ _ _ - - -
*
* Greenwich Mean Sidereal Time (model consistent with IAU 2000
* resolutions).
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical model.
\(\star\)
* Given:
    UTA, UTB \(d \quad\) UT1 as a 2-part Julian Date (Notes 1,2)
    TTA, TTB \(d T\) as a 2-part Julian Date (Notes 1,2)
*
*
* 1) The UT1 and TT dates UTA+UTB and TTA+TTB respectively, are both
*

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable (in the case of UT; the TT is not at all critical in this respect). The J2000 and MJD methods are good compromises between resolution and convenience. For UT, the date \& time method is best matched to the algorithm that is used by the Earth Rotation Angle routine, called internally: maximum accuracy (or, at least, minimum noise) is delivered when the UTA argument is for Ohrs UT1 on the day in question and the UTB argument lies in the range 0 to 1 , or vice versa.
2) Both UT1 and TT are required, UT1 to predict the Earth rotation and TT to predict the effects of precession. If UTl is used for both purposes, errors of order 100 microarcseconds result.
3) This GMST is compatible with the IAU 2000 resolutions and must be used only in conjunction with other IAU 2000 compatible components such as precession-nutation and equation of the equinoxes.
4) The result is returned in the range 0 to 2 pi.
5) The algorithm is from Capitaine et al. (2003) and IERS Conventions 2003.

Called:
iau_ERA00 Earth rotation angle, IAU 2000
iau_ANP normalize angle into range 0 to 2pi
References:
Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 2000 definition of UT1", Astronomy \& Astrophysics, 406, 1135-1149 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)
*-
*
* i a u_GMSTO6
\(\star\)
\(\star\)
*
* Greenwich mean sidereal time (consistent with IAU 2006 precession).
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: canonical model.
\(\star\)
* Given:
* UTA, UTB \(d \quad\) UT1 as a 2-part Julian Date (Notes 1,2)
* TTA, TTB a
\(\star\)
* Returned:
* iau_GMST06
*
* Notes:
\(\star\)
* 1) The UT1 and TT dates UTA+UTB and TTA+TTB respectively, are both
    iau_ERA00 Earth rotation angle, IAU 2000
    iau_ANP normalize angle into range 0 to 2pi
    Reference:
        Capitaine, N., Wallace, P.T. \& Chapront, J., 2005,
        Astron.Astrophys. 432, 355
*
* i a u_GMS T 82
* _ _ _ _ _ _ _ _ _ _ -
*
* Universal Time to Greenwich Mean Sidereal Time (IAU 1982 model).
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical model.
*
* Given:
* DJ1, DJ2 d UT1 Julian Date (see note)
*
* Returned:
        iau_GMST82 d Greenwich mean sidereal time (radians)
    Notes:
*
* 1) The UT1 epoch DJ1+DJ2 is a Julian Date, apportioned in any
*
\(\star\)
\(\star\)
*
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
    XVIII B, 67 (1983)
    Aoki et al., Astron. Astrophys. 105, 359-361 (1982).
* i a u_G S T O O A
* \(\quad\) - - _ - \(-\sim_{-}\)
\(\star\)
* Greenwich Apparent Sidereal Time (consistent with IAU 2000
* resolutions).
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical model.
\(\star\)
* Given:
    UTA, UTB \(d\) UT1 as a 2-part Julian Date (Notes 1,2)
    TTA, TTB \(d T\) as a 2-part Julian Date (Notes 1,2)
*
*
*
*
\(\star\)
* 1) The UT1 and TT dates UTA+UTB and TTA+TTB respectively, are both
\(\star\)
\(\star\)
* IERS Technical Note No. 32, BKG (2004)
\begin{tabular}{l} 
* \\
\(\star+\) \\
\hline
\end{tabular}
* i a ul G S T
* i a u_GSTOOB
\(\star\)
\(\star\)
* Greenwich Apparent Sidereal Time (consistent with IAU 2000
* resolutions but using the truncated nutation model IAU 2000B).
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
\(\star\)
* Given:
    UTA, UTB \(d\) UT1 as a 2-part Julian Date (Notes 1,2)
*
Returned:
        iau_GSTOOB d Greenwich apparent sidereal time (radians)
\(\star\)
\(\star\)
*
*
* 1) The UT1 date UTA+UTB is a Julian Date, apportioned in any
* implement the IAU 2000 definition of UT1", Astronomy \&
* Astrophysics, 406, 1135-1149 (2003)
* McCarthy, D.D. \& Luzum, B.J., "An abridged model of the
* precession-nutation of the celestial pole", Celestial Mechanics \&
* Dynamical Astronomy, 85, 37-49 (2003)

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)
- _ - - - - - - - -
* i a u_GSTO6
* _ _ _ _ _ _ _ _ _ -
*
* Greenwich apparent sidereal time, IAU 2006, given the NPB matrix.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
*
* Given:
* UTA, UTB d UT1 as a 2-part Julian Date (Notes 1,2)
* TTA, TTB \(\quad\) TT as a 2-part Julian Date (Notes 1,2)
\(\star\)
\(\star\)
\(\star\)
* Returned:
* iau_GST06 d Greenwich apparent sidereal time (radians)
*
* Notes:
* 1) The UT1 and TT dates UTA+UTB and TTA+TTB respectively, are both
    Julian Dates, apportioned in any convenient way between the
\(\star\)
\(\star\)
\(\star\)
\(\star\)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable (in the case of UT; the TT is not at all critical in this respect). The J2000 and MJD methods are good compromises between resolution and convenience. For UT, the date \& time method is best matched to the algorithm that is used by the Earth rotation angle routine, called internally: maximum accuracy (or, at least, minimum noise) is delivered when the UTA argument is for Ohrs UT1 on the day in question and the UTB argument lies in the range 0 to 1 , or vice versa.
2) Both UT1 and TT are required, UT1 to predict the Earth rotation and TT to predict the effects of precession-nutation. If UT1 is used for both purposes, errors of order 100 microarcseconds result.
3) Although the routine uses the IAU 2006 series for \(s+X Y / 2\), it is otherwise independent of the precession-nutation model and can in practice be used with any equinox-based NPB matrix.
4) The result is returned in the range 0 to 2 pi.

Called:
iau_BPN2XY extract CIP \(X, Y\) coordinates from NPB matrix
iau_S06 the CIO locator s, given X,Y, IAU 2006
iau_ANP normalize angle into range 0 to \(2 p i\) iau_ERA00 Earth rotation angle, IAU 2000 iau_EORS equation of the origins, given NPB matrix and \(s\)

Reference:
Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981
* i
* i u_GSTO 6 A
\(\star\)
\(\star\)
* Greenwich apparent sidereal time (consistent with IAU 2000 and 2006
* resolutions).
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical model.
\(\star\)
* Given:
    UTA, UTB d UT1 as a 2-part Julian Date (Notes 1,2)
    TTA, TTB \(d T\) as a 2-part Julian Date (Notes 1,2)
Returned:
    iau_GST06A d Greenwich apparent sidereal time (radians)
Notes:
1) The UT1 and TT dates UTA+UTB and TTA+TTB respectively, are both Julian Dates, apportioned in any convenient way between the * argument pairs. For example, JD=2450123.7 could be expressed in * any of these ways, among others: and TT to predict the effects of precession-nutation. If UT1 is used for both purposes, errors of order 100 microarcseconds result.
3) This GAST is compatible with the IAU \(2000 / 2006\) resolutions and must be used only in conjunction with IAU 2006 precession and IAU 2000A nutation.
4) The result is returned in the range 0 to 2 pi.

Called:
iau_PNM06A classical NPB matrix, IAU 2006/2000A
iau_GST06 Greenwich apparent ST, IAU 2006, given NPB matrix
Reference:
Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981
*
    Returned:
        iau_GST94 d Greenwich apparent sidereal time (radians)
\(J D=2450123.7\) could be expressed in any of these ways, among others:
\begin{tabular}{cc} 
UTA & UTB \\
\(2450123.7 D 0\) & \(0 D 0\) \\
\(2451545 D 0\) & \(-1421.3 D 0\) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) \\
\(2450123.5 D 0\) & \(0.2 D 0\)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 and MJD methods are good compromises between resolution and convenience. For UT, the date \& time method is best matched to the algorithm that is used by the Earth Rotation Angle routine, called internally: maximum accuracy (or, at least, minimum noise) is delivered when the UTA argument is for Ohrs UT1 on the day in question and the UTB argument lies in the range 0 to 1 , or vice versa.
2) The result is compatible with the IAU 1982 and 1994 resolutions, except that accuracy has been compromised for the sake of convenience in that UT is used instead of TDB (or TT) to compute the equation of the equinoxes.
3) This GAST must be used only in conjunction with contemporaneous IAU standards such as 1976 precession, 1980 obliquity and 1982 nutation. It is not compatible with the IAU 2000 resolutions.
4) The result is returned in the range 0 to 2 pi.

Called:
iau_GMST82 Greenwich mean sidereal time, IAU 1982
iau_EQEQ94 equation of the equinoxes, IAU 1994
iau_ANP normalize angle into range 0 to 2pi

\section*{References:}

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992) IAU Resolution C7, Recommendation 3 (1994)
```

 SUBROUTINE iau_H2FK5 (RH, DH, DRH, DDH, PXH, RVH,
 : R5, D5, DR5, DD5, PX5, RV5)
 *+

* +
* i a u _ H 2 F K 5
*
* Transform Hipparcos star data into the FK5 (J2000.0) system.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given (all Hipparcos, epoch J2000.0):
*
*
*
* Returned (all FK5, equinox J2000.0, epoch J2000.0):
* R5 d RA (radians)
* D5 d Dec (radians)
* DR5 d proper motion in RA (dRA/dt, rad/Jyear)
* DD5 d proper motion in Dec (dDec/dt, rad/Jyear)
*
* 1) This routine transforms Hipparcos star positions and proper
* motions into FK5 J2000.0.

2) The proper motions in RA are dRA/dt rather than cos(Dec)*dRA/dt,
and are per year rather than per century.
3) The FK5 to Hipparcos transformation is modeled as a pure rotation
and spin; zonal errors in the FK5 catalog are not taken into
account.
4) See also iau_FK52H, iau_FK5HZ, iau_HFK5Z.
Called:
iau_STARPV star catalog data to space motion pv-vector
iau_FK5HIP FK5 to Hipparcos rotation and spin
iau_RV2M r-vector to r-matrix
iau_RXP product of r-matrix and p-vector
iau_TRXP product of transpose of r-matrix and p-vector
iau_PXP vector product of two p-vectors
iau_PMP p-vector minus p-vector
iau_PVSTAR space motion pv-vector to star catalog data
Reference:
F.Mignard \& M.Froeschle, Astron. Astrophys. 354, 732-739 (2000).

*

```
* - _ _ _ _ _ - _ - -
* i a u_H FK 5 Z
* _ _ _ _ _ - _ _ _ -
*
* Transform a Hipparcos star position into FK5 J2000.0, assuming
* zero Hipparcos proper motion.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given:
    RH: \(\quad d \quad H i p p a r c o s ~ R A ~(r a d i a n s) ~\)
    DH d Hipparcos Dec (radians)
    DATE1,DATE2 d TDB date (Note 1)
    Returned (all FK5, equinox J2000.0, date DATE1+DATE2):
        R5 d RA (radians)
        D5 d Dec (radians)
        DR5 d FK5 RA proper motion (rad/year, Note 4)
        DD5 d Dec proper motion (rad/year, Note 4)
    Notes:
    1) The date DATE1+DATE2 is a Julian Date, apportioned in any
    convenient way between the two arguments. For example,
    JD \((T D B)=2450123.7\) could be expressed in any of these ways,
    among others:
DATE1
\(2450123.7 D 0\)
\(2451545 D 0\)
\(2400000.5 D 0\)
\(2450123.5 D 0\)

DATE2
\begin{tabular}{cl} 
0D0 & (JD method) \\
\(-1421.3 D 0\) & (J2000 method) \\
\(50123.2 D 0\) & (MJD method) \\
\(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The proper motion in \(R A\) is \(d R A / d t\) rather than \(\cos (D e c) * d R A / d t\).
3) The FK5 to Hipparcos transformation is modeled as a pure rotation and spin; zonal errors in the FK5 catalogue are not taken into account.
4) It was the intention that Hipparcos should be a close approximation to an inertial frame, so that distant objects have zero proper motion; such objects have (in general) non-zero proper motion in FK5, and this routine returns those fictitious proper motions.
5) The position returned by this routine is in the FK5 J2000.0 reference system but at date DATE1+DATE2.
6) See also iau_FK52H, iau_H2FK5, iau_FK5ZHZ.

Called:
iau_S2C spherical coordinates to unit vector
iau_FK5HIP FK5 to Hipparcos rotation and spin
* iau_RXP product of \(r\)-matrix and \(p\)-vector iau_SXP multiply p-vector by scalar
* iau_RXR product of two r-matrices iau_TRXP product of transpose of \(r\)-matrix and \(p\)-vector vector product of two p-vectors pv-vector to spherical
* iau_ANP normalize angle into range 0 to 2pi
* Reference:
* F.Mignard \& M.Froeschle, Astron. Astrophys. 354, 732-739 (2000).
*
* - - - - - - -
* i a u_I R
* - _ _ _ _ - -
*
* Initialize an r-matrix to the identity matrix.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Returned:
* \(\underset{\mathrm{R}}{\mathrm{Returned}} \mathrm{d}(3,3) \quad \mathrm{r}\)-matrix
*
*-
* \(-\quad-\quad-\quad-\quad-\)
* \(\sim_{-}\)a u_- J D 2 C A L
\(\star\)
* Julian Date to Gregorian year, month, day, and fraction of a day.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
* DJ1,DJ2 d Julian Date (Notes 1, 2)
* Returned:
* Returne
* IY
* IM
IM i month
ID i day
FD d fraction of day
J i status:
                                    \(0=O K\)
                                    \(-1=\) unacceptable date (Note 3)
    Notes:
1) The earliest valid date is -68569.5 (-4900 March 1). The
    largest value accepted is 10^9.
2) The Julian Date is apportioned in any convenient way between
        the arguments DJ1 and DJ2. For example, JD=2450123.7 could
        be expressed in any of these ways, among others:
\begin{tabular}{ccl} 
DJ1 & DJ2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
2400000.5D0 & \(50123.2 D 0\) & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}
3) In early eras the conversion is from the "Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the Gregorian Calendar, nor is the AD/BC numbering convention observed.

Reference:
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992), Section 12.92 (p604).
        NDP \(i\) number of decimal places of days in fraction
        DJ1,DJ2 d DJ1+DJ2 = Julian Date (Note 1)
Returned:
        IYMDF i(4) year, month, day, fraction in Gregorian
        calendar
        J
                    i status:
                    \(-1=\) date out of range
                            \(0=O K\)
                            \(+1=\) NDP not \(0-9\) (interpreted as 0 )
    Notes:
    1) The Julian Date is apportioned in any convenient way between
        the arguments DJ1 and DJ2. For example, JD=2450123.7 could
        be expressed in any of these ways, among others:
\begin{tabular}{ccl} 
DJ1 & DJ2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
2400000.5 D0 & \(50123.2 D 0\) & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}
2) In early eras the conversion is from the "Proleptic Gregorian Calendar"; no account is taken of the date(s) of adoption of the Gregorian Calendar, nor is the AD/BC numbering convention observed.
3) Refer to the routine iau_JD2CAL.
4) NDP should be 4 or less if internal overflows are to be avoided on machines which use 16-bit integers.

Called: iau_JD2CAL JD to Gregorian calendar

Reference:
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992), Section 12.92 (p604).

Notes:
1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD \((T T)=2450123.7\) could be expressed in any of these ways, among others:
\begin{tabular}{ccl} 
DATE1 & DATE2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
2400000.5D0 & 50123.2D0 & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix operates in the sense \(V(t r u e)=R M A T N ~ * ~ V(m e a n), ~\) where the \(p\)-vector \(V(t r u e)\) is with respect to the true equatorial triad of date and the p-vector \(V\) (mean) is with respect to the mean equatorial triad of date.
3) A faster, but slightly less accurate result (about 1 mas), can be obtained by using instead the iau_NUMOOB routine.

Called: iau_PNOOA bias/precession/nutation, IAU 2000A

Reference:
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992), Section 3.222-3 (p114).
```

* Status: support routine.

```
* Returned:
        RMATN \(d(3,3)\) nutation matrix
    Notes:
    1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
        convenient way between the two arguments. For example,
        JD (TT) \(=2450123.7\) could be expressed in any of these ways,
        among others:
\begin{tabular}{ccl} 
DATE1 & DATE2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
2400000.5D0 & 50123.2D0 & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix operates in the sense \(V(t r u e)=R M A T N ~ * ~ V(m e a n), ~\) where the \(p\)-vector \(V(t r u e)\) is with respect to the true equatorial triad of date and the p-vector \(V\) (mean) is with respect to the mean equatorial triad of date.
3) The present routine is faster, but slightly less accurate (about 1 mas), than the iau_NUMOOA routine.

Called: iau_PNOOB bias/precession/nutation, IAU 2000B

Reference:
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992), Section 3.222-3 (p114).
```

* Status: support routine.

```
* Returned:
        RMATN \(d(3,3)\) nutation matrix
    Notes:
    1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
        convenient way between the two arguments. For example,
        JD (TT) \(=2450123.7\) could be expressed in any of these ways,
        among others:
\begin{tabular}{ccl} 
DATE1 & DATE2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
2451545 D0 & \(-1421.3 D 0\) & (J2000 method) \\
\(2400000.5 D 0\) & 50123.2 D0 & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}
    The JD method is the most natural and convenient to use in
    cases where the loss of several decimal digits of resolution
    is acceptable. The J2000 method is best matched to the way
    the argument is handled internally and will deliver the
    optimum resolution. The MJD method and the date \& time methods
    are both good compromises between resolution and convenience.
    2) The matrix operates in the sense \(V(t r u e)=R M A T N ~ * ~ V(m e a n), ~\)
        where the \(p\)-vector \(V(t r u e)\) is with respect to the true
        equatorial triad of date and the \(p\)-vector \(V(m e a n)\) is with
        respect to the mean equatorial triad of date.
    Called:
        iau_OBL06 mean obliquity, IAU 2006
        iau_NUT06A nutation, IAU 2006/2000A
        iau_NUMAT form nutation matrix
    References:
        Capitaine, N., Wallace, P.T. \& Chapront, J., 2005, Astron.
        Astrophys. 432, 355
        Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981
        EPSA d mean obliquity of date (Note 1)
        DPSI, DEPS d nutation (Note 2)
* Returned:
* RMATN \(d(3,3)\) nutation matrix (Note 3) Section 3.222-3 (p114).
* This routine is part of the International Astronomical Union's
        DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
    Returned:
        DPSI,DEPS d nutation, luni-solar + planetary (Note 2)
    Notes:
1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD \((T T)=2450123.7\) could be expressed in any of these ways, among others:

\section*{DATE1}
\(2450123.7 D 0\)
\(2451545 D 0\)
\(2400000.5 D 0\)
\(2450123.5 D 0\)
ODO
\(-1421.3 D 0\)
\(50123.2 D 0\)
\(0.2 D 0\)
(JD method)
(J2000 method)
(MJD method)
(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The nutation components in longitude and obliquity are in radians and with respect to the equinox and ecliptic of date. The obliquity at J2000.0 is assumed to be the Lieske et al. (1977) value of 84381.448 arcsec.

Both the luni-solar and planetary nutations are included. The latter are due to direct planetary nutations and the perturbations of the lunar and terrestrial orbits.
3) The routine computes the MHB2000 nutation series with the associated corrections for planetary nutations. It is an implementation of the nutation part of the IAU 2000A precessionnutation model, formally adopted by the IAU General Assembly in 2000, namely MHB2000 (Mathews et al. 2002), but with the free core nutation (FCN - see Note 4) omitted.
4) The full MHB2000 model also contains contributions to the nutations in longitude and obliquity due to the free-excitation of the free-core-nutation during the period 1979-2000. These FCN terms, which are time-dependent and unpredictable, are NOT included in the present routine and, if required, must be independently computed. With the FCN corrections included, the present routine delivers a pole which is at current epochs accurate to a few hundred microarcseconds. The omission of FCN introduces further errors of about that size.
5) The present routine provides classical nutation. The MHB2000 algorithm, from which it is adapted, deals also with (i) the offsets between the GCRS and mean poles and (ii) the adjustments in longitude and obliquity due to the changed precession rates. These additional functions, namely frame bias and precession
adjustments, are supported by the SOFA routines iau_BIOO and iau_PR00.
6) The MHB2000 algorithm also provides "total" nutations, comprising the arithmetic sum of the frame bias, precession adjustments, luni-solar nutation and planetary nutation. These total nutations can be used in combination with an existing IAU 1976 precession implementation, such as iau_PMAT76, to deliver GCRS-to-true predictions of sub-mas accuracy at current epochs. However, there are three shortcomings in the MHB2000 model that must be taken into account if more accurate or definitive results are required (see Wallace 2002):
(i) The MHB2000 total nutations are simply arithmetic sums, yet in reality the various components are successive Euler rotations. This slight lack of rigor leads to cross terms that exceed 1 mas after a century. The rigorous procedure is to form the GCRS-to-true rotation matrix by applying the bias, precession and nutation in that order.
(ii) Although the precession adjustments are stated to be with respect to Lieske et al. (1977), the MHB2000 model does not specify which set of Euler angles are to be used and how the adjustments are to be applied. The most literal and straightforward procedure is to adopt the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and to add DPSIPR to psi_A and DEPSPR to both omega_A and eps_A.
(iii) The MHB2000 model predates the determination by Chapront et al. (2002) of a 14.6 mas displacement between the J2000.0 mean equinox and the origin of the ICRS frame. It should, however, be noted that neglecting this displacement when calculating star coordinates does not lead to a 14.6 mas change in right ascension, only a small second-order distortion in the pattern of the precession-nutation effect.

For these reasons, the SOFA routines do not generate the "total nutations" directly, though they can of course easily be generated by calling iau_BIOO, iau_PROO and the present routine and adding the results.
7) The MHB2000 model contains 41 instances where the same frequency appears multiple times, of which 38 are duplicates and three are triplicates. To keep the present code close to the original MHB algorithm, this small inefficiency has not been corrected.

Called:
iau_FAL03 mean anomaly of the Moon
iau_FAFO3 mean argument of the latitude of the Moon iau_FAOM03 mean longitude of the Moon's ascending node iau_FAME03 mean longitude of Mercury iau_FAVE03 mean longitude of Venus iau_FAE03
iau_FAMA03 iau_FAJU03 iau_FASA03 iau_FAUR03 mean longitude of Earth
mean longitude of Mars
mean longitude of Jupiter
mean longitude of Saturn
mean longitude of Uranus iau_FAPA03 general accumulated precession in longitude

References:
Chapront, J., Chapront-Touze, M. \& Francou, G. 2002, Astron.Astrophys. 387, 700

Lieske, J.H., Lederle, T., Fricke, W. \& Morando, B. 1977, Astron.Astrophys. 58, 1-16

Mathews, P.M., Herring, T.A., Buffet, B.A. 2002, J.Geophys.Res. 107, B4. The MHB_2000 code itself was obtained on 9th September 2002 from ftp//maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683
* Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
* Astron.Astrophys.Supp.Ser. 135, 111
*
* Wallace, P.T., "Software for Implementing the IAU 2000
* Resolutions", in IERS Workshop 5.1 (2002)
*

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The nutation components in longitude and obliquity are in radians and with respect to the equinox and ecliptic of date. The obliquity at J2000.0 is assumed to be the Lieske et al. (1977) value of 84381.448 arcsec. (The errors that result from using this routine with the IAU 2006 value of 84381.406 arcsec can be neglected.)

The nutation model consists only of luni-solar terms, but includes also a fixed offset which compensates for certain long-period planetary terms (Note 7).
3) This routine is an implementation of the IAU 2000B abridged nutation model formally adopted by the IAU General Assembly in 2000. The routine computes the MHB_2000_SHORT luni-solar nutation series (Luzum 2001), but without the associated corrections for the precession rate adjustments and the offset between the GCRS and J2000.0 mean poles.
4) The full IAU 2000A (MHB2000) nutation model contains nearly 1400 terms. The IAU 2000B model (McCarthy \& Luzum 2003) contains only 77 terms, plus additional simplifications, yet still delivers results of 1 mas accuracy at present epochs. This combination of accuracy and size makes the IAU 2000B abridged nutation model suitable for most practical applications.

The routine delivers a pole accurate to 1 mas from 1900 to 2100 (usually better than 1 mas, very occasionally just outside 1 mas). The full IAU 2000A model, which is implemented in the routine iau_NUTOOA (q.v.), delivers considerably greater accuracy at current epochs; however, to realize this improved accuracy, corrections for the essentially unpredictable free-core-nutation (FCN) must also be included.
5) The present routine provides classical nutation. The MHB_2000_SHORT algorithm, from which it is adapted, deals also with (i) the offsets between the GCRS and mean poles and (ii) the adjustments in longitude and obliquity due to the changed precession rates. These additional functions, namely frame bias and precession adjustments, are supported by the SOFA routines iau_BIOO and iau_PROO.
6) The MHB_2000_SHORT algorithm also provides "total" nutations, comprising the arithmetic sum of the frame bias, precession adjustments, and nutation (luni-solar + planetary). These total nutations can be used in combination with an existing IAU 1976 precession implementation, such as iau_PMAT76, to deliver GCRS-totrue predictions of mas accuracy at current epochs. However, for symmetry with the iau_NUTOOA routine (q.v. for the reasons), the SOFA routines do not generate the "total nutations" directly. Should they be required, they could of course easily be generated by calling iau_BIOO, iau_PROO and the present routine and adding the results.
7) The IAU 2000B model includes "planetary bias" terms that are fixed in size but compensate for long-period nutations. The amplitudes quoted in McCarthy \& Luzum (2003), namely Dpsi \(=-1.5835\) mas and Depsilon \(=+1.6339\) mas, are optimized for the "total nutations" method described in Note 6. The Luzum (2001) values used in this SOFA implementation, namely -0.135 mas and +0.388 mas, are optimized for the "rigorous" method, where frame bias, precession and nutation are applied separately and in that order. During the interval 1995-2050, the SOFA implementation delivers a maximum error of 1.001 mas (not including \(F C N\) ).

References:
Lieske, J.H., Lederle, T., Fricke, W., Morando, B., "Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants", Astron.Astrophys. 58, 1-2, 1-16. (1977)

Luzum, B., private communication, 2001 (Fortran code MHB_2000_SHORT)

McCarthy, D.D. \& Luzum, B.J., "An abridged model of the precession-nutation of the celestial pole", Cel.Mech.Dyn.Astron. 85, 37-49 (2003)

Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., Laskar, J., Astron.Astrophys. 282, 663-683 (1994)convenient way between the two arguments. For example,JD \((T T)=2450123.7\) could be expressed in any of these ways,
    among others
\begin{tabular}{ccl} 
DATE1 & DATE2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The nutation components in longitude and obliquity are in radians and with respect to the mean equinox and ecliptic of date, IAU 2006 precession model (Hilton et al. 2006, Capitaine et al. 2005) .
3) The routine first computes the IAU 2000A nutation, then applies adjustments for (i) the consequences of the change in obliquity from the IAU 1980 ecliptic to the IAU 2006 ecliptic and (ii) the secular variation in the Earth's dynamical form factor J2.
4) The present routine provides classical nutation, complementing the IAU 2000 frame bias and IAU 2006 precession. It delivers a pole which is at current epochs accurate to a few tens of microarcseconds, apart from the free core nutation.

Called:
iau_NUT00A nutation, IAU 2000A
Reference:
Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981
```

* Status: canonical model.

```

\section*{Notes:}
1) The DATE DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, \(J D(T D B)=2450123.7\) could be expressed in any of these ways, among others:
\begin{tabular}{cc} 
DATE1 & DATE2 \\
\(2450123.7 D 0\) & \(0 D 0\) \\
\(2451545 D 0\) & \(-1421.3 D 0\) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) \\
\(2450123.5 D 0\) & \(0.2 D 0\)
\end{tabular}
(JD method) 2451545 D0 -1421.3D0 (J2000 method) 2450123.5D0
0.2 D 0
(MJD method)
(date \& time method)
The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The nutation components are with respect to the ecliptic of date.

Called: iau_ANPM normalize angle into range +/- pi

Reference:
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992), Section 3.222 (p111).
Notes
1) The date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD (TDB) \(=2450123.7\) could be expressed in any of these ways, among others:
\begin{tabular}{ccl} 
DATE1 & DATE2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
2400000.5D0 & 50123.2D0 & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix operates in the sense \(V(t r u e)=R M A T N ~ * ~ V(m e a n), ~\) where the \(p\)-vector \(V\) (true) is with respect to the true equatorial triad of date and the p-vector \(V(m e a n)\) is with respect to the mean equatorial triad of date.

Called:
\[
\begin{array}{ll}
\text { iau_NUT80 } & \text { nutation, IAU } 1980 \\
\text { iau_OBL80 } & \text { mean obliquity, IAU } 1980 \\
\text { iau_NUMAT } & \text { form nutation matrix }
\end{array}
\]
* i a u - O B L 06
*
* Mean obliquity of the ecliptic, IAU 2006 precession model.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical model.
*
* Given:
* DATE1,DATE2 \(d\) TT as a 2-part Julian Date (Note 1)
*
* Returned:
*
* Notes:
\(\star\)
* 1) The date DATE1+DATE2 is a Julian Date, apportioned in any
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
\(*\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)

\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(*\)
\(\star\)
\(\star\)
\(\star\)
*
*
\(\star\)
* 2) The result is the angle between the ecliptic and mean equator of
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
* Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351
* i a u _ O B L 80
\(\star\)
\(\star\)
\(\star\)
* Mean obliquity of the ecliptic, IAU 1980 model.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical model.
*
* Given:
\(\star\)
\(\star\)
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
*
\(\star\)
* 1) The date DATE1+DATE2 is a Julian Date, apportioned in any
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(*\)
\(\star\)
\(*\)
\(\star\)
\(\star\)
\(*\)
\(*\)
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
*
*
        Explanatory Supplement to the Astronomical Almanac,
        P. Kenneth Seidelmann (ed), University Science Books (1992),
        Expression 3.222-1 (p114).
```

 SUBROUTINE iau_P06E (DATE1, DATE2,
 EPSO, PSIA, OMA, BPA, BQA, PIA, BPIA,
 EPSA, CHIA, ZA, ZETAA, THETAA, PA,
 GAM, PHI, PSI)
 *+

* i a u - P 0 6 E
*
* Precession angles, IAU 2006, equinox based.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical models.
*
* Given:
DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
* Returned (see Note 2):
*
*
*
*
*
*
*
*
*
*
*
* *
*
* *

EPS0	d	epsilon_
PSIA	d	psi_A

 OMA d omega_A
 BPA d P_A
 BQA d Q_A
 PIA d pi_A
 BPIA d Pi_A
 EPSA d obliquity epsilon_A
 CHIA d chi_A
 ZA d z_A
 ZETAA d zeta_A
 THETAA d theta__A
 PA
 P_A
 GAM d F-W angle gamma_J2000
 PHI d F-W angle phi_J2000
 PSI d F-W angle psi__J2000
 Notes:
 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
 convenient way between the two arguments. For example,
 JD (TT) =2450123.7 could be expressed in any of these ways,
 among others
 DATE1
 DATE2
 | $2450123.7 D 0$ | $0 D 0$ | (JD method) |
| :---: | :---: | :--- |
| $2451545 D 0$ | $-1421.3 D 0$ | (J2000 method) |
| $2400000.5 D 0$ | $50123.2 D 0$ | (MJD method) |
| $2450123.5 D 0$ | $0.2 D 0$ | (date \& time method) |

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) This routine returns the set of equinox based angles for the Capitaine et al. "P03" precession theory, adopted by the IAU in 2006. The angles are set out in Table 1 of Hilton et al. (2006):

EPSO	epsilon_0	obliquity at J2000.0
PSIA	psi_A	luni-solar precession
OMA	omega_A	inclination of equator wrt J2000.0 ecliptic
BPA	P_A	ecliptic pole x, J2000.0 ecliptic triad
BQA	Q_A	ecliptic pole -y, J2000.0 ecliptic triad
PIA	pi_A	angle between moving and J2000.0 ecliptics
BPIA	Pi_A	longitude of ascending node of the ecliptic
EPSA	epsilon_A	obliquity of the ecliptic
CHIA	chi_A	planetary precession
ZA	Z_A	equatorial precession: -3rd 323 Euler angle

```
\(\star\)

ZETAA zeta_A equatorial precession: -1st 323 Euler angle THETAA theta_A equatorial precession: 2nd 323 Euler angle PA p_A general precession
GAM gamma_J2000 J2000.0 RA difference of ecliptic poles
PHI phi_J2000 J2000.0 codeclination of ecliptic pole PSI psi_J2000 longitude difference of equator poles, J2000.0

The returned values are all radians.
3) Hilton et al. (2006) Table 1 also contains angles that depend on models distinct from the \(P 03\) precession theory itself, namely the IAU 2000A frame bias and nutation. The quoted polynomials are used in other SOFA routines:
. iau_XY06 contains the polynomial parts of the \(X\) and \(Y\) series.
. iau_S06 contains the polynomial part of the \(s+X Y / 2\) series.
- iau_PFW06 implements the series for the Fukushima-Williams angles that are with respect to the GCRS pole (i.e. the variants that include frame bias).
4) The IAU resolution stipulated that the choice of parameterization was left to the user, and so an IAU compliant precession implementation can be constructed using various combinations of the angles returned by the present routine.
5) The parameterization used by SOFA is the version of the FukushimaWilliams angles that refers directly to the GCRS pole. These angles may be calculated by calling the routine iau_PFW06. SOFA also supports the direct computation of the CIP GCRS \(X, Y\) by series, available by calling iau_XY06.
6) The agreement between the different parameterizations is at the 1 microarcsecond level in the present era.
7) When constructing a precession formulation that refers to the GCRS pole rather than the dynamical pole, it may (depending on the choice of angles) be necessary to introduce the frame bias explicitly.

Reference:
Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351
Called: iau_OBL06 mean obliquity, IAU 2006
* Extend a p-vector to a pv-vector by appending a zero velocity.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* \(\underset{P}{\text { Given }} \quad d(3) \quad\)-vector
*
* Returned:
* PV \(d(3,2) \quad p v\)-vector
*
* Called:
* iau_cp copy p-vector
* iau_ZP
    zero p-vector
* i a u_P 2 S
* _ _ _ _ _ _ - -
*
* P-vector to spherical polar coordinates.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* P d(3) p-vector
*
* Returned:
* THETA d longitude angle (radians)
* PHI d latitude angle (radians)
* \(\quad \mathrm{R}\)
\(R\) d radial distance
* Notes:
* 1) If \(P\) is null, zero THETA, PHI and \(R\) are returned.
* 2) At either pole, zero THETA is returned.
* Called:
* iau_C2S p-vector to spherical
        \(\begin{array}{ll}\text { iau_C2S } & \text { p-vector } \\ \text { iau_PM } & \text { modulus of } p \text {-vector }\end{array}\)
*
        A the position angle is approximately +pi/2.
    2) \(A\) and \(B\) need not be unit vectors.
    3) Zero is returned if the two directions are the same or if either
        vector is null.
4) If \(A\) is at a pole, the result is ill-defined.
* Called:
* iau_PN
    iau_PN decompose p-vector into modulus and direction
    iau_PM modulus of \(p\)-vector
    iau_PXP vector product of two p-vectors
    iau_PMP p-vector minus p-vector
    iau_PDP
    scalar product of two p-vectors
* i a u_PAS
* _ _ _ _ _ _ _ -
*
* Position-angle from spherical coordinates.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* AL d longitude of point A (e.g. RA) in radians
* AP d latitude of point A (e.g. Dec) in radians
* BL d longitude of point \(B\)
*
*
* Returned:
* THETA d position angle of \(B\) with respect to \(A\)
* Notes:
*
* 1) The result is the bearing (position angle), in radians, of point
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
* i a u
* i a u_P B 06
\(\star\)
\(\star\)
\(\star\)
* This routine forms three Euler angles which implement general
* precession from epoch J2000.0, using the IAU 2006 model. Frame
* bias (the offset between ICRS and mean J2000.0) is included.
\(\star\)
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: support routine.
\(\star\)
* Given:
\(\star\)
\(\star\)
\(\star\)
\(\star\)
BZ d 3rd rotation: radians clockwise around \(z\)
1st rotation: radians clockwise around \(z\)
BTHETA d 2nd rotation: radians counterclockwise around y
Notes:
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The traditional accumulated precession angles zeta_A, \(z \_A\), theta_A cannot be obtained in the usual way, namely through polynomial expressions, because of the frame bias. The latter means that two of the angles undergo rapid changes near this date. They are instead the results of decomposing the precession-bias matrix obtained by using the Fukushima-Williams method, which does not suffer from the problem. The decomposition returns values which can be used in the conventional formulation and which include frame bias.
3) The three angles are returned in the conventional order, which is not the same as the order of the corresponding Euler rotations. The precession-bias matrix is R_3(-z) x R_2(+theta) x R_3(-zeta).
4) Should zeta_A, \(z \_A\), theta_A angles be required that do not contain frame bias, they are available by calling the SOFA routine iau_P06E.

Called:
iau_RZ rotate around Z-axis
```

 SUBROUTINE iau_PDP (A, B, ADB)
    ```
\(\star+\)
\(\star\)

+
* - - _ - _ - - -
* i a u - P D P
* _ _ _ _ _ _ _
*
* \(p\)-vector inner (=scalar=dot) product.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* A d(3) first p-vector
* B d(3) second p-vector
* Returned:
* ADB d A . B
*
*
- _ _ - - _ - - - -
* i a u_P FWO 6
* _ _ _ _ _ _ _ _ _ -
*
* Precession angles, IAU 2006 (Fukushima-Williams 4-angle formulation).
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: canonical model.
*
* Given:
* DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
* Returned:
        GAMB d \(F-W\) angle gamma_bar (radians)
        PHIB \(d \quad F-W\) angle phi_bar (radians)
        PSIB \(d \quad F-W\) angle psi_bar (radians)
        EPSA \(d \quad F-W\) angle epsilon_A (radians)
    Notes:
    1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
        convenient way between the two arguments. For example,
        \(J D(T T)=2450123.7\) could be expressed in any of these ways,
        among others
            DATE1
                DATE2
\begin{tabular}{ccl}
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) Naming the following points:
\(e=\) J2000.0 ecliptic pole,
\(\mathrm{p}=\mathrm{GCRS}\) pole,
\(\mathrm{E}=\) mean ecliptic pole of date,
and \(P=\) mean pole of date, the four Fukushima-Williams angles are as follows:

GAMB = gamma_bar \(=\) epE
PHIB \(=\) phi_bar \(=\mathrm{pE}\)
PSIB \(=\) psi_bar \(=\) pEP
EPSA \(=\) epsilon_A \(=E P\)
3) The matrix representing the combined effects of frame bias and precession is:
\(P \times B=R \_1(-E P S A) \cdot R \_3(-P S I B) \cdot R \_1(P H I B) \cdot R \_3\) (GAMB)
4) The matrix representing the combined effects of frame bias, precession and nutation is simply:
\(N x P \times B=R \_1(-E P S A-d E) \cdot R \_3(-P S I B-d P) \cdot R \_1(P H I B) \cdot R \_3(G A M B)\)
where \(d P\) and \(d E\) are the nutation components with respect to the ecliptic of date.

Reference:
* Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351
* Called:
* iau_OBL06 mean obliquity, IAU 2006
*
\(\star\)
\(\star\)
-
- _ - - - - _ - - - -
* i a u_P LAN 94
* _ _ _ _ _ _ _ _ _ _
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
* Approximate heliocentric position and velocity of a nominated major
* planet: Mercury, Venus, EMB, Mars, Jupiter, Saturn, Uranus or
* Neptune (but not the Earth itself).
*
* Given:
* Given:
* DATE1
    DATE1 d TDB date part A (Note 1)
    DATE2 d TDB date part B (Note 1)
    NP i planet (1=Mercury, 2=Venus, 3=EMB ... 8=Neptune)
*
* Returned:
    PV d(3,2) planet pos, vel (heliocentric, J2000.0, AU, AU/d)
    J i \(\quad \mathrm{status:}-1=\) illegal NP (outside 1-8)
                                    0 = OK
                                    \(+1=\) warning: date outside 1000-3000 AD
                            +2 = warning: solution failed to converge
Notes:
1) The date DATE1+DATE2 is in the TDB timescale and is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD \((T D B)=2450123.7\) could be expressed in any of these ways, among others:

DATE1
\begin{tabular}{cc}
\(2450123.7 D 0\) & \(0 D 0\) \\
\(2451545 D 0\) & \(-1421.3 D 0\) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) \\
\(2450123.5 D 0\) & \(0.2 D 0\)
\end{tabular}
(JD method)
(J2000 method)
(MJD method)
(date \& time method)
(J2000 method)
(MJD method)
(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience. The limited accuracy of the present algorithm is such that any of the methods is satisfactory.
2) If an NP value outside the range \(1-8\) is supplied, an error status \((J=-1)\) is returned and the PV vector set to zeroes.
3) For \(\mathrm{NP}=3\) the result is for the Earth-Moon Barycenter. To obtain the heliocentric position and velocity of the Earth, use instead the SOFA routine iau_EPVOO.
4) On successful return, the array \(P V\) contains the following:
\begin{tabular}{llll}
\(\operatorname{PV}(1,1)\) & \(x\) & \(\}\) & \\
\(\operatorname{PV}(2,1)\) & \(y\) & \(\}\) & heliocentric position, AU \\
\(\operatorname{PV}(3,1)\) & \(z\) & \(\}\) & \\
& & \\
PV \((1,2)\) & xdot & \(\}\) & \\
\(\operatorname{PV}(2,2)\) & ydot & \(\}\) & heliocentric velocity, AU/d \\
\(\operatorname{PV}(3,2)\) & zdot & \(\}\) &
\end{tabular}

The reference frame is equatorial and is with respect to the mean equator and equinox of epoch J2000.0.
5) The algorithm is due to J.L. Simon, P. Bretagnon, J. Chapront, M. Chapront-Touze, G. Francou and J. Laskar (Bureau des

* 7) The returned status, J, indicates the most serious condition * encountered during execution of the routine. Illegal NP is considered the most serious, overriding failure to converge,
* Called:
* iau ANP
*
* Reference: Simon, J.L, Bretagnon, P., Chapront, J.,
\(\star\)
\(\star\)
*
*
style conventions.
None of the above changes affects the result significantly. which in turn takes precedence over the remote epoch warning.
iau_ANP
normalize angle into range 0 to 2 pi Chapront-Touze, M., Francou, G., and Laskar, J., Astron. Astrophys. 282, 663 (1994).
* - - - - - -
* i a u \(\quad\) P M
* - _ _ _ _ -
*
* Modulus of p -vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* Given
* P
*
* Returned:
* R d modulus
*
* i a u_P MA T 00
* _ _ _ _-_ _ _ _ _ _
*
* Precession matrix (including frame bias) from GCRS to a specified
* date, IAU 2000 model.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
* Given:
        DATE1,DATE2 \(d\) TT as a 2-part Julian Date (Note 1)
*
Returned:
        RBP d(3,3) bias-precession matrix (Note 2)
    Notes:
\(\star\)
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the arguments DATE1 and DATE2. For example, JD \((T T)=2450123.7\) could be expressed in any of these ways, among others:

\section*{DATE1}

DATE2
\begin{tabular}{ccl}
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) & (MJD method) \\
\(2450123.5 D 0\) & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix operates in the sense \(V\) (date) \(=R B P * V(G C R S)\), where the p-vector \(V(G C R S)\) is with respect to the Geocentric Celestial Reference System (IAU, 2000) and the p-vector V(date) is with respect to the mean equatorial triad of the given date.

Called: iau_BP00 frame bias and precession matrices, IAU 2000

Reference:
IAU: Trans. International Astronomical Union, Vol. XXIVB; Proc. 24th General Assembly, Manchester, UK. Resolutions B1.3, B1.6. (2000)

* _ _ _ _ _ _ _ _ _ _
*
* Precession matrix (including frame bias) from GCRS to a specified
* date, IAU 2006 model.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
* Given:
        DATE1,DATE2 \(d\) TT as a 2-part Julian Date (Note 1)
    Returned:
        RBP \(\quad d(3,3)\) bias-precession matrix (Note 2)
    Notes:
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
        iau_PREC76 accumulated precession angles, IAU 1976
        iau_IR initialize r-matrix to identity
        iau_RZ rotate around Z-axis
        iau_RY rotate around Y-axis
        iau_CR copy r-matrix
    References:
        Lieske, J.H., 1979, Astron.Astrophys. 73, 282.
        equations (6) \& (7), p283.
        Kaplan, G.H., 1981, USNO circular no. 163, pA2.
```

 SUBROUTINE iau_PMP (A, B, AMB)
    ```
\(\star+\)
\(\star\)

+
* - - - - _ - -
* i a u_P M P
* _ _ _ _ _ _ _ -
*
* \(P\)-vector subtraction.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* A d(3) first p-vector
* B d(3) second p-vector
* Returned:
* \(\begin{gathered}\text { Returned } \\ *\end{gathered}\) AMB \(\quad d(3) \quad A-B\)
*
* - - - - - - -
* i a u_P N
* _ _ _ _ _ _ -
*
* Convert a p-vector into modulus and unit vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* \(P\) d(3) p-vector
\(\star\)
* Returned:
* R d modulus
* U d(3) unit vector
* Note:
* If \(P\) is null, the result is null. Otherwise the result is
* a unit vector.
* Called:
* iau_PM modulus of p-vector
* iau_ZP zero p-vector
* iau_SXP
*
zero p-vector
multiply p-vector by scalar
```

 SUBROUTINE iau_PN00 (DATE1, DATE2, DPSI, DEPS,
 : EPSA, RB, RP, RBP, RN, RBPN)
 *+

* _ - _ - _ _ _ _ -
* i a u__ P N O O
* _ --_-__-_-
*
* Precession-nutation, IAU 2000 model: a multi-purpose routine,
* supporting classical (equinox-based) use directly and CIO-based
* use indirectly.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
* Given:
* DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
*
*

*eturned:
EPSA d mean obliquity (Note 3)
RB d(3,3) frame bias matrix (Note 4)
RP d(3,3) precession matrix (Note 5)
RBP d(3,3) bias-precession matrix (Note 6)
RN d(3,3) nutation matrix (Note 7)
RBPN -d (3,3)
GCRS-to-true matrix (Note 8)
Notes:
1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
convenient way between the two arguments. For example,
JD (TT) =2450123.7 could be expressed in any of these ways,
among others:

DATE1	DATE2	
$2450123.7 D 0$	$0 D 0$	(JD method)
2451545 D0	$-1421.3 D 0$	(J2000 method)
$2400000.5 D 0$	50123.2 D0	(MJD method)
$2450123.5 D 0$	$0.2 D 0$	(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The caller is responsible for providing the nutation components; they are in longitude and obliquity, in radians and are with respect to the equinox and ecliptic of date. For high-accuracy applications, free core nutation should be included as well as any other relevant corrections to the position of the CIP.
3) The returned mean obliquity is consistent with the IAU 2000 precession-nutation models.
4) The matrix RB transforms vectors from GCRS to J2000.0 mean equator and equinox by applying frame bias.
5) The matrix RP transforms vectors from J2000.0 mean equator and equinox to mean equator and equinox of date by applying precession.
6) The matrix RBP transforms vectors from GCRS to mean equator and equinox of date by applying frame bias then precession. It is the product $R P$ x $R B$.
7) The matrix RN transforms vectors from mean equator and equinox of date to true equator and equinox of date by applying the nutation (luni-solar + planetary).

```
8) The matrix RBPN transforms vectors from GCRS to true equator and equinox of date. It is the product RN x RBP, applying frame bias, precession and nutation in that order.
Called:
iau_PR00 IAU 2000 precession adjustments
iau_OBL80 mean obliquity, IAU 1980
iau_BP00
frame bias and precession matrices, IAU 2000
iau_NUMAT form nutation matrix
iau_RXR product of two r-matrices
Reference:
    Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
    "Expressions for the Celestial Intermediate Pole and Celestial
    Ephemeris Origin consistent with the IAU 2000A precession-nutation
    model", Astron.Astrophys. 400, 1145-1154 (2003)
    n.b. The celestial ephemeris origin (CEO) was renamed "celestial
        intermediate origin" (CIO) by IAU 2006 Resolution 2.
```

 SUBROUTINE iau_PNOOA (DATE1, DATE2,
 : DPSI, DEPS, EPSA, RB, RP, RBP, RN, RBPN)
 *+

* - - - - _ _ - _ - -
* i a u_P N O O A
*
* Precession-nutation, IAU 2000A model: a multi-purpose routine,
* supporting classical (equinox-based) use directly and CIO-based
* use indirectly.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given:
DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
* Returned:
*
*
*
*
*
*
*
*
*
*
*
*
*

**

* date to true equator and equinox of date by applying the nutation (luni-solar + planetary).

```
8) The matrix RBPN transforms vectors from GCRS to true equator and equinox of date. It is the product RN x RBP, applying frame bias, precession and nutation in that order.
) The \(X, Y, Z\) coordinates of the IAU 2000A Celestial Intermediate Pole are elements \((3,1-3)\) of the matrix RBPN.

Called:
iau_NUT00A nutation, IAU 2000A
iau_PNOO bias/precession/nutation results, IAU 2000
Reference:
Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
"Expressions for the Celestial Intermediate Pole and Celestial
Ephemeris Origin consistent with the IAU 2000A precession-nutation model", Astron.Astrophys. 400, 1145-1154 (2003).
n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by IAU 2006 Resolution 2.
```

 SUBROUTINE iau_PNOOB (DATE1, DATE2,
 : DPSI, DEPS, EPSA, RB, RP, RBP, RN, RBPN)
 *+

* - - _ - _ _ - _ - -
* i a u_P N O O B
*
* Precession-nutation, IAU 2000B model: a multi-purpose routine,
* supporting classical (equinox-based) use directly and CIO-based
* use indirectly.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given:
DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
* Returned:
*
*
*
*
*
*
*
*
* *
*
*
*
*

**

* and equinox by applying frame bias.
* 5) The matrix RP transforms vectors from J2000.0 mean equator and equinox to mean equator and equinox of date by applying precession.

6) The matrix RBP transforms vectors from GCRS to mean equator and equinox of date by applying frame bias then precession. It is the product RP x RB.
7) The matrix RN transforms vectors from mean equator and equinox of date to true equator and equinox of date by applying the nutation (luni-solar + planetary).
```
8) The matrix RBPN transforms vectors from GCRS to true equator and equinox of date. It is the product RN x RBP, applying frame bias, precession and nutation in that order.
9) The \(X, Y, Z\) coordinates of the IAU 2000B Celestial Intermediate Pole are elements \((3,1-3)\) of the matrix RBPN.

Called: model", Astron.Astrophys. 400, 1145-1154 (2003).
n.b. The celestial ephemeris origin (CEO) was renamed "celestial intermediate origin" (CIO) by IAU 2006 Resolution 2.
```

 SUBROUTINE iau_PN06 (DATE1, DATE2, DPSI, DEPS,
 : EPSA, RB, RP, RBP, RN, RBPN)
 *+

* - - - - - _ - _ -
* i a u_P N O 6
* _ - _ _-_ _ _ _
*
* Precession-nutation, IAU 2006 model: a multi-purpose routine,
* supporting classical (equinox-based) use directly and CIO-based use
* indirectly.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given.
* DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
*
* Returned:
* EPSA
EPSA d mean obliquity (Note 3)
RB d(3,3) frame bias matrix (Note 4)
RP d(3,3) precession matrix (Note 5)
RBP d(3,3) bias-precession matrix (Note 6)
RN d(3,3) nutation matrix (Note 7)
RBPN d(3,3)
GCRS-to-true matrix (Note 8)
Notes:

1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
convenient way between the two arguments. For example,
JD (TT) =2450123.7 could be expressed in any of these ways,
among others:

DATE1	DATE2	
$2450123.7 D 0$	$0 D 0$	(JD method)
2451545 D0	$-1421.3 D 0$	(J2000 method)
$2400000.5 D 0$	$50123.2 D 0$	(MJD method)
$2450123.5 D 0$	$0.2 D 0$	(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The caller is responsible for providing the nutation components; they are in longitude and obliquity, in radians and are with respect to the equinox and ecliptic of date. For high-accuracy applications, free core nutation should be included as well as any other relevant corrections to the position of the CIP.
3) The returned mean obliquity is consistent with the IAU 2006 precession.
4) The matrix RB transforms vectors from GCRS to mean J2000.0 by applying frame bias.
5) The matrix RP transforms vectors from mean J2000.0 to mean of date by applying precession.
6) The matrix RBP transforms vectors from GCRS to mean of date by applying frame bias then precession. It is the product $R P \mathrm{x} R \mathrm{RB}$.
7) The matrix RN transforms vectors from mean of date to true of date by applying the nutation (luni-solar + planetary).
8) The matrix RBPN transforms vectors from GCRS to true of date (CIP/equinox). It is the product RN x RBP, applying frame bias,

```
* 9) The \(X, Y, Z\) coordinates of the IAU 2006/2000A Celestial Intermediate
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
*
\(\star\)
*
\(\star\)
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
*
precession and nutation in that order. Pole are elements \((3,1-3)\) of the matrix RBPN.

Called:
\begin{tabular}{ll} 
iau_PFW06 & bias-precession F-W angles, IAU 2006 \\
iau_FW2M & F-W angles to r-matrix \\
iau_TR & transpose r-matrix \\
iau_RXR & product of two r-matrices
\end{tabular}

References:
Capitaine, N. \& Wallace, P.T., 2006, Astron.Astrophys. 450, 855
Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981
```

 SUBROUTINE iau_PN06A (DATE1, DATE2,
 : DPSI, DEPS, EPSA, RB, RP, RBP, RN, RBPN)
 *+

* - - - - _ _ - - - -
* i a u_P N O 6 A
*
* Precession-nutation, IAU 2006/2000A models: a multi-purpose routine,
* supporting classical (equinox-based) use directly and CIO-based use
* indirectly.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
* Given:
DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
* Returned:
* DPSI,DEPS
* EPSA
*
*
*
*
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
*
*
* *
*
*
*
*
*
*
*
*
*
*
*
*
* 4) The matrix RB transforms vectors from GCRS to mean J2000.0 by
*
*

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The nutation components (luni-solar + planetary, IAU 2000A) in longitude and obliquity are in radians and with respect to the equinox and ecliptic of date. Free core nutation is omitted; for the utmost accuracy, use the iau_PN06 routine, where the nutation components are caller-specified.
3) The mean obliquity is consistent with the IAU 2006 precession.
4) The matrix RB transforms vectors from GCRS to mean J2000.0 by applying frame bias.
5) The matrix RP transforms vectors from mean J2000.0 to mean of date by applying precession.
6) The matrix RBP transforms vectors from GCRS to mean of date by applying frame bias then precession. It is the product RP x RB.
7) The matrix RN transforms vectors from mean of date to true of date by applying the nutation (luni-solar + planetary).
8) The matrix RBPN transforms vectors from GCRS to true of date (CIP/equinox). It is the product RN x RBP, applying frame bias, precession and nutation in that order.

```
* 9) The \(X, Y, Z\) coordinates of the IAU 2006/2000A Celestial Intermediate
* Pole are elements (3,1-3) of the matrix RBPN.
* Called:
* iau_NUT06A nutation, IAU 2006/2000A
* iau_PN06 bias/precession/nutation results, IAU 2006
* Reference:
* Capitaine, N. \& Wallace, P.T., 2006, Astron.Astrophys. 450, 855
*
* i a u_P N MOOA
\(\star\)
\(\star\)
\(\star\)
* Form the matrix of precession-nutation for a given date (including
* frame bias), equinox-based, IAU 2000A model.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
    DATE1,DATE2 \(d\) TT as a 2-part Julian Date (Note 1)
*
*
* Returned:
    RBPN \(\quad d(3,3) \quad\) classical NPB matrix (Note 2)
*
*
*
*
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(*\)
\(\star\)
    (2000)
Returned:
        RBPN d(3,3) bias-precession-nutation matrix (Note 2)
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
    (2000)

JD (TT) \(=2450123.7\) could be expressed in any of these ways, among others:

DATE2
\begin{tabular}{ccl}
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
2451545 DD & -1421.3 D 0 & (J2000 method) \\
2400000.5 DO & 50123.2 DO & (MJD method) \\
2450123.5 DO & 0.2 DO & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix operates in the sense \(V\) (date) \(=\) RBPN * \(V(G C R S)\), where the p-vector \(V(d a t e)\) is with respect to the true equatorial triad of date DATE1+DATE2 and the p-vector \(V(G C R S)\) is with respect to the Geocentric Celestial Reference System (IAU, 2000).
3) The present routine is faster, but slightly less accurate (about 1 mas), than the iau_PNMOOA routine.

Called:
iau_PNOOB bias/precession/nutation, IAU 2000B
Reference: (2000)
Returned:
        RNPB d(3,3) bias-precession-nutation matrix (Note 2)
    iau_NUT06A nutation, IAU 2006/2000A
    iau_FW2M \(F-W\) angles to r-matrix
Reference:
    Capitaine, N. \& Wallace, P.T., 2006, Astron.Astrophys. 450, 855.
* \(\mathrm{a} u \quad\) P N M 80
\begin{tabular}{l} 
* \\
\(\star\) \\
\\
\hline
\end{tabular}
*
* Form the matrix of precession/nutation for a given date, IAU 1976
* precession model, IAU 1980 nutation model.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
        DATE1,DATE2 d TDB date (Note 1)
*
Returned: \(\quad d(3,3) \quad\) combined precession/nutation matrix
RMATPN
*
*
\(\star\)
* 1) The date DATE1+DATE2 is a Julian Date, apportioned in any
*
*
\(\star\)
\(*\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\) Section 3.3 (p145).

JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The matrix operates in the sense \(V\) (date) \(=\) RMATPN * V(J2000), where the p-vector \(V\) (date) is with respect to the true equatorial triad of date DATE1+DATE2 and the p-vector \(\mathrm{V}(\mathrm{J} 2000)\) is with respect to the mean equatorial triad of epoch J2000.0.

Called:
iau_PMAT76 precession matrix, IAU 1976
iau_NUTM80 nutation matrix, IAU 1980 iau_RXR product of two r-matrices

Reference:
Explanatory Supplement to the Astronomical Almanac,
* \(\quad\) a u \(-\mathrm{P} O\) M 00
\(\star\)
\(*\)
\(*\)
* Form the matrix of polar motion for a given date, IAU 2000.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
*
* Given:
* XP,YP \(\quad\) coordinates of the pole (radians, Note 1)
        SP d the TIO locator \(s^{\prime}\) (radians, Note 2)
*
* Returned:
    RPOM \(d(3,3)\) polar-motion matrix (Note 3)
\(\star\)
\(\star\)
\(\star\) direction to a celestial source.
Called:
    iau_IR initialize r-matrix to identity
    iau_RZ rotate around Z-axis
    iau_RY rotate around Y-axis
    iau_RX rotate around X-axis
Reference:
    McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
    IERS Technical Note No. 32, BKG (2004)
- - - - - - - -
* i a u - P P P
* _ _ _ _ _ _ _
*
* P -vector addition.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* A d(3) first p-vector
* B d(3) second p-vector
* Returned:
* Returned: \(\quad d(3) \quad A+B\)
* APB
*
- - - - - - - - -
* i a u_P P S P
* _ _ _ _ _ _ _ _
*
* P-vector plus scaled p-vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* \(\underset{\text { A }}{ }\) d(3) first p-vector
* S d scalar (multiplier for B)
* B d(3) second p-vector
* Returned:
\(\star\) APSB \(d(3) \quad A+S * B\)
*
```

 SUBROUTINE iau_PR00 (DATE1, DATE2, DPSIPR, DEPSPR)
 *+
*

* i a u_P R 0 0
* - - - - - - - - -
*
* Precession-rate part of the IAU 2000 precession-nutation models
* (part of MHB2000).
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical model.
*
* Given:
DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
Returned:
DPSIPR,DEPSPR d precession corrections (Notes 2,3)
*
*
*
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
*
*
*
*
*
*
*
*
* cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.

2) The precession adjustments are expressed as "nutation components", corrections in longitude and obliquity with respect to the J2000.0 equinox and ecliptic.
3) Although the precession adjustments are stated to be with respect to Lieske et al. (1977), the MHB2000 model does not specify which set of Euler angles are to be used and how the adjustments are to be applied. The most literal and straightforward procedure is to adopt the 4 -rotation epsilon_0, psi_A, omega_A, xi_A option, and to add DPSIPR to psi_A and DEPSPR to both omega_A and eps_A.
4) This is an implementation of one aspect of the IAU 2000A nutation model, formally adopted by the IAU General Assembly in 2000, namely MHB2000 (Mathews et al. 2002).
References:
Lieske, J.H., Lederle, T., Fricke, W. \& Morando, B., "Expressions for the precession quantities based upon the IAU (1976) System of Astronomical Constants", Astron.Astrophys., 58, 1-16 (1977)
Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation and precession New nutation series for nonrigid Earth and insights into the Earth's interior", J.Geophys.Res., 107, B4, 2002. The MHB2000 code itself was obtained on 9th September 2002 from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.
Wallace, P.T., "Software for Implementing the IAU 2000 Resolutions", in IERS Workshop 5.1 (2002).
```
* _ - _ - _ - _ - - - -
* i a u_PREC76
* _ _ _ _- _ _ _ - .
*
* IAU 1976 precession model.
*
* This routine forms the three Euler angles which implement general
* precession between two epochs, using the IAU 1976 model (as for
* the FK5 catalog).
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical model.
* Given:
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
* Returned:
    ZETA d 1st rotation: radians clockwise around z
    Z d 3rd rotation: radians clockwise around z
    THETA d 2nd rotation: radians counterclockwise around y
    Notes:
    1) The epochs EP01+EP02 and EP11+EP12 are Julian Dates, apportioned
        in any convenient way between the arguments EPn1 and EPn2. For
        example, JD \((T D B)=2450123.7\) could be expressed in any of these
        ways, among others:
\begin{tabular}{ccl} 
EPn1 & EPn2 & \\
\(2450123.7 D 0\) & \(0 D 0\) & (JD method) \\
\(2451545 D 0\) & \(-1421.3 D 0\) & (J2000 method) \\
2400000.5 DO & \(50123.2 D 0\) & (MJD method) \\
2450123.5 D0 & \(0.2 D 0\) & (date \& time method)
\end{tabular}

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience. The two epochs may be expressed using different methods, but at the risk of losing some resolution.
2) The accumulated precession angles zeta, \(z\), theta are expressed through canonical polynomials which are valid only for a limited time span. In addition, the IAU 1976 precession rate is known to be imperfect. The absolute accuracy of the present formulation is better than 0.1 arcsec from 1960AD to 2040 AD , better than 1 arcsec from 1640AD to 2360AD, and remains below 3 arcsec for the whole of the period 500BC to 3000AD. The errors exceed 10 arcsec outside the range 1200 BC to 3900 AD , exceed 100 arcsec outside 4200 BC to 5600AD and exceed 1000 arcsec outside 6800 BC to 8200 AD .
3) The three angles are returned in the conventional order, which is not the same as the order of the corresponding Euler rotations. The precession matrix is R_3(-z) x R_2(+theta) x R_3(-zeta).

Reference:
Lieske, J.H., 1979, Astron.Astrophys. 73, 282. equations (6) \& (7), p283.
        SUBROUTINE iau_PV2P ( PV, P )
\(\star+\)
\(\star\)
+
* - - - - - - - -
* i a u_P V 2 P
* _ _ _ _ _ _ _ _ -
*
* Discard velocity component of a pv-vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given
* Given:
* PV \(d(3,2) \quad p v\)-vector
*
* Returned:
* P d(3) p-vector
*
* Called:
* iau_CP copy p-vector
*
*
* _ - - _ - _ - _ -
* i a u_PV2 S
* _ - - _ - - - -
*
* Convert position/velocity from Cartesian to spherical coordinates.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* PV d(3,2) pv-vector
\(\star\)
* Returned:
* THETA d longitude angle (radians)
* TD d radial distance
* PD d rate of change of PHI
* RD d rate of change of \(R\)
\(\star\)
\(\star\)
*
* 1) If the position part of \(P V\) is null, THETA, PHI, TD and PD
    are indeterminate. This is handled by extrapolating the
    position through unit time by using the velocity part of
    PV. This moves the origin without changing the direction
    of the velocity component. If the position and velocity
    components of PV are both null, zeroes are returned for all
    six results.
    2) If the position is a pole, THETA, \(T D\) and \(P D\) are indeterminate.
        In such cases zeroes are returned for all three.
\(\star\)
\(\star\)
\(\star\)
\(\star\)
* - - - - - - - - - -
* i a u_P V D P V
* _ _ - _ _ _ _ _ _ -
*
* Inner (=scalar=dot) product of two pv-vectors.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* A d \((3,2)\) first pv-vector
*
* Returned:
\(\star\)
\(\star\)
\(\star\)
*
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
*
*
* Called:
* iau_PDP
    iau_PDP scalar product of two p-vectors
\(\star\)
\(\star\)
\(\star\)
```

 SUBROUTINE iau_PVM (PV, R, S)
    ```
\(\star+\)
\(\star\)

+
* - - - - - - - -
* i a u_P V M
* _ _ _ _ _ _ _
*
* Modulus of pv -vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* Given:
* PV \(d(3,2) \quad p v\)-vector
\(\star\)
* Returned:
* R d modulus of position component
* S d modulus of velocity component
* Called:
* iau_PM modulus of p-vector
*
\(*-\)
* i a u_PVMPV
* _ _ _ _ _ _ _ _ _ -
*
* Subtract one pv-vector from another.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* A d \((3,2)\) first pv-vector
* B d(3,2) second pv-vector
* Returned:
* AMB \(\quad d(3,2) \quad A-B\)
*
* Called:
* iau_PMP p-vector minus p-vector
*
*-
*
* i a u_P V P P V
* _ _ _ _ _ _ _ _ _ -
*
* Add one pv-vector to another.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* A d \((3,2)\) first pv-vector
* B \(\begin{array}{lll}\text { A } & d(3,2) & \text { second } p v \text {-vector }\end{array}\)
* Returned:
* APB \(\quad d(3,2) \quad A+B\)
*
* Called:
* iau_PPP p-vector plus p-vector
*
*-
* i
* i a u_P V S T A R
\(\star\)
\(*\)
\(*\)
* - - - - - - - - -
* Convert star position+velocity vector to catalog coordinates.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
*
* Given (Note 1):
* Given (Note 1):
* Returned (Note 2) :
* RA
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(*\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)
\(\star\)

The proper motions are the rate of change of the right ascension and declination at the catalog epoch and are in radians per Julian year. The RA proper motion is in terms of coordinate angle, not
        true angle, and will thus be numerically larger at high
        declinations.
    5) Straight-line motion at constant speed in the inertial frame is
        assumed. If the speed is greater than or equal to the speed of
        light, the routine aborts with an error status.
* _ _ _ _ _ _ - -
*
* Update a pv-vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* DT d time interval
* PV d \((3,2)\) pv-vector
* Returned:
* UPV d \((3,2)\) p updated, \(v\) unchanged
*
* Notes:
* 1) "Update" means "refer the position component of the vector
* to a new epoch DT time units from the existing epoch".
* 2) The time units of \(D T\) must match those of the velocity.
* Called:
* iau_PPSP p-vector plus scaled p-vector
* iau_CP
copy p-vector
* - - - - - - - - -
* i a u_P V U P
* _ _ _ _ _ _ _ _ -
*
* Update a pv-vector, discarding the velocity component.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* DT d time interval
* PV d(3,2) pv-vector
* Returned:
* P d(3) p-vector
* Notes:
* Notes:
* 1) "Update" means "refer the position component of the vector to a
* new date DT time units from the existing date".
* 2) The time units of \(D T\) must match those of the velocity.
*
* - - - - - - - - - -
* i a u_P V X P V
* _ _ _ _ _ _ _ _ _ -
*
* Outer (=vector=cross) product of two pv-vectors.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* A d \((3,2)\) first pv-vector
*
\(\star\)
* Returned:
\(\star\)
\(\star\)
\(\star\)
*
\(\star\)
\(\star\)
*
*
\(\star\)
*
*
\(\star\)
\(\star\)
    Called:
        iau_CPV copy pv-vector
* \(1 a u_{\text {_CPV }}\)
* iau_PXP
vector product of two p-vectors
\(\star\)
\(\star\)
    iau_PPP
    \(p\)-vector plus \(p\)-vector
```

 SUBROUTINE iau_PXP (A, B, AXB)
    ```
\(\star+\)
\(\star\)

+
* - - - - - - - -
* i a u \(\quad\) P X P
* _ _ _ _ _ _ _ -
*
* p-vector outer (=vector=cross) product.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* A d(3) first p-vector
* B d(3) second p-vector
* Returned:
* AXB \(\quad d(3)\) A x B
*
*- some arbitrary axis called the Euler axis. The "rotation vector" returned by this routine has the same direction as the Euler axis, and its magnitude is the angle in radians. (The magnitude and direction can be separated by means of the routine iau_PN.)
2) If \(R\) is null, so is the result. If \(R\) is not a rotation matrix the result is undefined. \(R\) must be proper (i.e. have a positive determinant) and real orthogonal (inverse = transpose).
* 3) The reference frame rotates clockwise as seen looking along the rotation vector from the origin.
*
* Given:
* W d(3) rotation vector (Note 1)

\section*{*}
* Returned:
* \(\quad\) R \(d(3,3)\) rotation matrix
*
* Notes:
*
* 1) A rotation matrix describes a rotation through some angle about
\[
\star
\]
* 2) If \(W\) is null, the unit matrix is returned.
*
* 3) The reference frame rotates clockwise as seen looking along the
* - - _ - - - -
* \(\quad\) i \(a u_{-}\)R X
* _ _ _ _ _ -
*
* Rotate an r-matrix about the \(x\)-axis.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* PHI d angle (radians)
\(\star\)
* Given and returned:
* \(\quad\) R \(\quad d(3,3)\)
*
Notes:
\(\star\)
* 1) Calling this routine with positive PHI incorporates in the
        supplied \(r\)-matrix \(R\) an additional rotation, about the \(x\)-axis,
        anticlockwise as seen looking towards the origin from positive x.
    2) The additional rotation can be represented by this matrix:
\begin{tabular}{|c|c|c|}
\hline ( 1 & 0 & 0 \\
\hline ( & & \\
\hline \((0\) & \(+\cos (\mathrm{PHI})\) & \(+\sin (\mathrm{PHI})\) \\
\hline ( & & \\
\hline \((0\) & - sin(PHI) & \(+\cos (\mathrm{PHI})\) \\
\hline
\end{tabular}
* \(\quad\) i \(a u^{*}\) R X P
* _ _ _ _ _ _ _
*
* Multiply a p-vector by an r-matrix.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* \(\quad\) R \((3,3) \quad\)-matrix
* \(\quad\) P d(3) p-vector
* Returned:
* RP \(\quad d(3) \quad R * P\)
*
* Called:
* iau_CP copy p-vector
* - _ _ _ _ - _ - -
*
* Multiply a pv-vector by an r-matrix.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
\(\star \quad\) R \(d(3,3) \quad r\)-matrix
* PV d(3,2) pv-vector
* Returned:
* RPV \(d(3,2) \quad R * P V\)
*
* Called:
* iau_RXP product of r-matrix and p-vector
* _ - - - _ - - -
* i a u \(\quad\) R X R
* _ _ _ _ _ _ -
*
* Multiply two r-matrices.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* A d \((3,3)\) first r-matrix
* B \(\quad d(3,3)\) second r-matrix
* Returned:
* ATB \(d(3,3)\) A * B
*
* Called:
* iau_CR copy r-matrix
* - - - - - - -
* \(\quad i \quad a \quad u-R Y\)
* - _ _ _ _ -
*
* Rotate an r-matrix about the \(y\)-axis.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* THETA d angle (radians)
* Given and returned:
* \(\quad\) ~ \(\quad\) ( 3,3 )
*
Notes:
*
* 1) Calling this routine with positive THETA incorporates in the
    supplied \(r\)-matrix \(R\) an additional rotation, about the y-axis,
        anticlockwise as seen looking towards the origin from positive y.
    2) The additional rotation can be represented by this matrix:
\begin{tabular}{|c|c|c|}
\hline + cos (THETA) & 0 & - sin (THETA) \\
\hline ( \({ }^{\text {a }}\) & & \\
\hline ( 0 & 1 & 0 \\
\hline ( & & \\
\hline \((+\sin (\) THETA) & 0 & \(+\cos (\) THETA) \\
\hline
\end{tabular}
* - - - - - - -
* i a u \(-R \quad\) Z
* _ _ _ _ _ - -
*
* Rotate an r-matrix about the \(z\)-axis.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* PSI d angle (radians)
\(\star\)
* Given and returned:
*
* Notes:
* 1) Calling this routine with positive PSI incorporates in the
        supplied r-matrix \(R\) an additional rotation, about the \(z\)-axis,
        anticlockwise as seen looking towards the origin from positive z.
    2) The additional rotation can be represented by this matrix:

* - - - -
* i a u - S 00
\(\star\)
*
* The CIO locator s, positioning the Celestial Intermediate Origin on
* the equator of the Celestial Intermediate Pole, given the CIP's X,Y
* coordinates. Compatible with IAU 2000A precession-nutation.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: canonical model.
*
* Given:
* DATE1,DATE2 \(d\) TT as a 2-part Julian Date (Note 1)
\(\star\)
* Returned:
    iau_S00 d the CIO locator \(s\) in radians (Note 2)
\(\star\)
\(\star\)
Notes:
* model", Astron.Astrophys. 400, 1145-1154 (2003)
* n.b. The celestial ephemeris origin (CEO) was renamed "celestial
* intermediate origin" (CIO) by IAU 2006 Resolution 2.
* McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
* IERS Technical Note No. 32, BKG (2004)
* - - - - - - - - -
* i a u_S O OA
* _ _ _ _ _ _ _ _ -
*
* The CIO locator s, positioning the Celestial Intermediate Origin on
* the equator of the Celestial Intermediate Pole, using the IAU 2000A
* precession-nutation model.
\(\stackrel{+}{\star}\)
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: support routine.
*
* Given:
DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
\(\star\)
*
*
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
* IERS Technical Note No. 32, BKG (2004)
\begin{tabular}{l} 
* \\
\(\star+\) \\
\hline
\end{tabular}
* - - - - - - - - -
* i a u - S 0 O B
* \(\quad\) - \(\quad\) - - - \(\quad-\quad-\)
\(\star\)
* The CIO locator s, positioning the Celestial Intermediate Origin on
* the equator of the Celestial Intermediate Pole, using the IAU 2000B
* precession-nutation model.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
*
* Given:
DATE1,DATE2 \(\quad\) TT as a 2-part Julian Date (Note 1)
*
*
*
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
* IERS Technical Note No. 32, BKG (2004)
\begin{tabular}{l} 
* \\
\(\star+\) \\
\hline
\end{tabular}
* i
* i a u 0 S 6
\(\star\)
\(\star\)
\(\star\)
* The CIO locator \(s\), positioning the Celestial Intermediate Origin on * the equator of the Celestial Intermediate Pole, given the CIP's X,Y
* coordinates. Compatible with IAU 2006/2000A precession-nutation.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Astrophys. 432, 355
* McCarthy, D.D., Petit, G. (eds.) 2004, IERS Conventions (2003),
* IERS Technical Note No. 32, BKG
*
*
* i
* i a u_S 06 A
\(\star\)
\(\star\)
* The CIO locator s, positioning the Celestial Intermediate Origin on
* the equator of the Celestial Intermediate Pole, using the IAU 2006
* precession and IAU 2000A nutation models.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\(\star\)
* Status: support routine.
*
* Given:
DATE1,DATE2 d TT as a 2-part Julian Date (Note 1)
*
*
*
*
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any
* IERS Technical Note No. 32, BKG
* Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981
* -
* - - - - - - - -
* i a u \(\quad\) S 2 C
* _ _ _ _ _ _ _
*
* Convert spherical coordinates to Cartesian.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* THETA d longitude angle (radians)
* PHI d latitude angle (radians)
* Returned:
* C d(3) direction cosines
*
*
```

 SUBROUTINE iau_S2P (THETA, PHI, R, P)
 *+

* _ _ _ _ _ _ _ -
* i a u - S 2 P
* _ _ _ _ _ _ _ -
*
* Convert spherical polar coordinates to p-vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* THETA d longitude angle (radians)
* PHI d latitude angle (radians)
* R d radial distance
*
* Returned:
* P d(3) Cartesian coordinates
* Called:
* iau_S2C spherical coordinates to unit vector
* iau SXP
iau_SXP multiply p-vector by scalar
* *

```
* - - - _ - - - - -
* i a u - S 2 P V
* _ _ _ _ _ _ _ _ -
*
* Convert position/velocity from spherical to Cartesian coordinates.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
*
* Given:
* THETA d longitude angle (radians)
* PHI d latitude angle (radians)
* \(\quad\) R
    R d radial distance
    TD d
    PD d
* RD d rate of change of \(R\)
* Returned:
* PV d(3,2) pv-vector
_ _ _ _ _ - _ - _ -
* i a u_S 2 X P V
* _ _ _ _ _ _ _ _ _ -
*
* Multiply a pv-vector by two scalars.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* S1 d scalar to multiply position component by
* S2 d scalar to multiply velocity component by
* PV \(d(3,2) \quad p v\)-vector
* Returned:
* SPV d(3,2) pv-vector: p scaled by S1, v scaled by S2
*
* Called:
* iau_SXP multiply p-vector by scalar

\section*{Notes:}
1) If either vector is null, a zero result is returned.
2) The angular separation is most simply formulated in terms of scalar product. However, this gives poor accuracy for angles near zero and pi. The present algorithm uses both cross product and dot product, to deliver full accuracy whatever the size of the angle.

\section*{Called:}
\begin{tabular}{ll} 
iau_PXP & vector product of two p-vectors \\
iau_PM & modulus of p-vector \\
iau_PDP & scalar product of two p-vectors
\end{tabular}
* _ _ _ _ _ _ _ _ -
*
* Angular separation between two sets of spherical coordinates.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: vector/matrix support routine.
*
* Given:
* AL d first longitude (radians)
* AP
* BL
d
    BL d
    BP d second latitude (radians)
    first latitude (radians)
\(\star\) BL
    second longitude (radians)
* Returned:
* Returned: d angular separation (radians)
* Called:
* iau_S2C
    spherical coordinates to unit vector
* iau_SEPP
    angular separation between two p-vectors
Returned:
        iau_SP00 d the TIO locator \(s^{\prime}\) in radians (Note 2)
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD \((T T)=2450123.7\) could be expressed in any of these ways, among others:
\begin{tabular}{cc} 
DATE1 & DATE2 \\
2450123.7 D0 & \(0 D 0\) \\
2451545 D0 & \(-1421.3 D 0\) \\
\(2400000.5 D 0\) & \(50123.2 D 0\) \\
\(2450123.5 D 0\) & \(0.2 D 0\)
\end{tabular}
(JD method)
(J2000 method)
(MJD method)
(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The TIO locator \(s^{\prime}\) is obtained from polar motion observations by numerical integration, and so is in essence unpredictable. However, it is dominated by a secular drift of about 47 microarcseconds per century, which is the approximation evaluated by the present routine.

Reference:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)
```

 SUBROUTINE iau_STARPM (RA1, DEC1, PMR1, PMD1, PX1, RV1,
 : EP1A, EP1B, EP2A, EP2B,
 RA2, DEC2, PMR2, PMD2, PX2, RV2, J)
 *+

* - - - - - - - - - - -
* i a u_S T A R P M
* - _ - _ - - - - - - -
*
* Star proper motion: update star catalog data for space motion.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
*
*
*
*
*
*
*
*
*
*
*

```
right ascension (radians), before
```

right ascension (radians), before
declination (radians), before
declination (radians), before
RA proper motion (radians/year), before
RA proper motion (radians/year), before
Dec proper motion (radians/year), before
Dec proper motion (radians/year), before
parallax (arcseconds), before
parallax (arcseconds), before
radial velocity (km/s, +ve = receding), before
radial velocity (km/s, +ve = receding), before
"before" epoch, part A (Note 1)
"before" epoch, part A (Note 1)
"before" epoch, part B (Note 1)
"before" epoch, part B (Note 1)
"after" epoch, part A (Note 1)
"after" epoch, part A (Note 1)
"after" epoch, part B (Note 1)
"after" epoch, part B (Note 1)
right ascension (radians), after
right ascension (radians), after
declination (radians), after
declination (radians), after
RA proper motion (radians/year), after
RA proper motion (radians/year), after
Dec proper motion (radians/year), after
Dec proper motion (radians/year), after
parallax (arcseconds), after
parallax (arcseconds), after
radial velocity (km/s, +ve = receding), after
radial velocity (km/s, +ve = receding), after
status:
status:
-1 = system error (should not occur)
-1 = system error (should not occur)
0 = no warnings or errors
0 = no warnings or errors
1 = distance overridden (Note 6)
1 = distance overridden (Note 6)
2 = excessive velocity (Note 7)
2 = excessive velocity (Note 7)
4 = solution didn't converge (Note 8)
4 = solution didn't converge (Note 8)
else = binary logical OR of the above warnings
else = binary logical OR of the above warnings
Notes:

1) The starting and ending TDB epochs EP1A+EP1B and EP2A+EP2B are Julian Dates, apportioned in any convenient way between the two parts (A and B). For example, JD (TDB) $=2450123.7$ could be expressed in any of these ways, among others:

EPnA	EPnB	
$2450123.7 D 0$	$0 D 0$	(JD method)
$2451545 D 0$	$-1421.3 D 0$	(J2000 method)
$2400000.5 D 0$	$50123.2 D 0$	(MJD method)
$2450123.5 D 0$	$0.2 D 0$	(date \& time method)

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) In accordance with normal star-catalog conventions, the object's right ascension and declination are freed from the effects of secular aberration. The frame, which is aligned to the catalog equator and equinox, is Lorentzian and centered on the SSB.
The proper motions are the rate of change of the right ascension and declination at the catalog epoch and are in radians per TDB Julian year.

```

The parallax and radial velocity are in the same frame.
3) Care is needed with units. The star coordinates are in radians and the proper motions in radians per Julian year, but the parallax is in arcseconds.
4) The RA proper motion is in terms of coordinate angle, not true angle. If the catalog uses arcseconds for both RA and Dec proper motions, the RA proper motion will need to be divided by cos (Dec) before use.
5) Straight-line motion at constant speed, in the inertial frame, is assumed.
6) An extremely small (or zero or negative) parallax is interpreted to mean that the object is on the "celestial sphere", the radius of which is an arbitrary (large) value (see the iau_STARPV routine for the value used). When the distance is overridden in this way, the status, initially zero, has 1 added to it.
7) If the space velocity is a significant fraction of \(c\) (see the constant VMAX in the routine iau_STARPV), it is arbitrarily set to zero. When this action occurs, 2 is added to the status.
8) The relativistic adjustment carried out in the iau_STARPV routine involves an iterative calculation. If the process fails to converge within a set number of iterations, 4 is added to the status.

Called:
iau_STARPV star catalog data to space motion pv-vector
iau_PVU update a pv-vector iau_PDP scalar product of two p-vectors iau_PVSTAR space motion pv-vector to star catalog data
* i a u \(\quad\) S TAR P V
*
*
* Convert star catalog coordinates to position+velocity vector.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: support routine.
*
* Given (Note 1):
the pv-vector result is in AU and AU/day.
4) The RA proper motion is in terms of coordinate angle, not true angle. If the catalog uses arcseconds for both RA and Dec proper motions, the RA proper motion will need to be divided by cos(Dec) before use.
5) Straight-line motion at constant speed, in the inertial frame, is assumed.
6) An extremely small (or zero or negative) parallax is interpreted to mean that the object is on the "celestial sphere", the radius of which is an arbitrary (large) value (see the constant PXMIN). When the distance is overridden in this way, the status, initially zero, has 1 added to it.
7) If the space velocity is a significant fraction of \(c\) (see the constant VMAX), it is arbitrarily set to zero. When this action occurs, 2 is added to the status.
8) The relativistic adjustment involves an iterative calculation. If the process fails to converge within a set number (IMAX) of iterations, 4 is added to the status.
9) The inverse transformation is performed by the routine iau_PVSTAR.

Called:
iau_S2PV spherical coordinates to pv-vector
iau_PM
modulus of \(p\)-vector
iau_ZP
zero p-vector
iau_PN decompose p-vector into modulus and direction
iau_PDP scalar product of two p-vectors
iau_SXP multiply p-vector by scalar
iau_PMP p-vector minus p-vector
iau_PPP
p -vector plus p -vector
Reference:
Stumpff, P., Astron.Astrophys. 144, 232-240 (1985).
* - - - - - - - -
* i a u - S X P
* _ _ _ _ _ _ -
*
* Multiply a p-vector by a scalar.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
\(*\)
\(*\)
\(*\)\(\quad\) Give
\begin{tabular}{lll}
\(S\) & \(d\) & scalar \\
\(P\) & \(d(3)\) & p-vector
\end{tabular}
* Returned:
* \(\mathrm{SP} \quad \mathrm{d}(3) \quad S * P\)
*
*-
* - - - _ - - _ - -
* i a u - S X P V
* _ _ _ _ _ _ _ _ -
*
* Multiply a pv-vector by a scalar.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* S d scalar
* PV d(3,2) pv-vector
* Returned:
* SPV \(d(3,2) \quad S * P V\)
*
* Called:
* iau_S2XPV multiply pv-vector by two scalars
*
*-

TAI1+TAI2 is Julian Date, apportioned in any convenient way between the two arguments, for example where TAII is the Julian Day Number and TAI2 is the fraction of a day. The returned TT1,TT2 follow suit.

References:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)
Explanatory Supplement to the Astronomical Almanac,
P. Kenneth Seidelmann (ed), University Science Books (1992)
* _ a u _ T A I U T 1
*
* Time scale transformation: International Atomic Time, TAI, to
* Universal Time, UT1.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical.
* Given:
    TAI1,TAI2 d TAI as a 2-part Julian Date
    DTA d UT1-TAI in seconds
Returned:
    UT11, UT12 d UT1 as a 2-part Julian Date
    J
i status: \(0=0 \mathrm{OK}\)
    Notes:
    1) TAI1+TAI2 is Julian Date, apportioned in any convenient way
        between the two arguments, for example where TAI1 is the Julian
        Day Number and TAI2 is the fraction of a day. The returned
        UT11, UT12 follow suit.
    2) The argument DTA, i.e. UT1-TAI, is an observed quantity, and is
        available from IERS tabulations.
    Reference:
        Explanatory Supplement to the Astronomical Almanac,
        P. Kenneth Seidelmann (ed), University Science Books (1992)
* This routine is part of the International Astronomical Union's
* This routine is part of the International Astronomical Union \({ }^{*}\) s
*
* Status: canonical.
* Given:
    TAI1,TAI2 \(d\) TAI as a 2-part Julian Date (Note 1)
Returned:
        UTC1,UTC2 d UTC as a 2-part quasi Julian Date (Notes 1-3)
        J i status: +1 = dubious year (Note 4)
    \(0=O K\)
    -1 = unacceptable date
    Notes:
1) TAI1+TAI2 is Julian Date, apportioned in any convenient way between the two arguments, for example where TAI1 is the Julian Day Number and TAI2 is the fraction of a day. The returned UTC1 and UTC2 form an analogous pair, except that a special convention is used, to deal with the problem of leap seconds - see the next note.
2) JD cannot unambiguously represent UTC during a leap second unless special measures are taken. The convention in the present routine is that the JD day represents UTC days whether the length is 86399 , 86400 or 86401 SI seconds.
3) The routine iau_D2DTF can be used to transform the UTC quasi-JD into calendar date and clock time, including UTC leap second handling.
4) The warning status "dubious year" flags UTCs that predate the introduction of the time scale and that are too far in the future to be trusted. See iau_DAT for further details.

Called:
iau_JD2CAL JD to Gregorian calendar
iau_DAT delta(AT) = TAI-UTC
iau_CAL2JD Gregorian calendar to JD
References:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books
* i a u \(\quad\) T C B T D B
* _ _ _ _ _ - _ _ _ _
*
* Time scale transformation: Barycentric Coordinate Time, TCB, to
* Barycentric Dynamical Time, TDB.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical.
*
* Given:
    TCB1,TCB2 \(d \quad\) TCB as a 2-part Julian Date
*
* Returned:
\(\star\)
*
*
* Notes
*
        IT1,TT2
                                d TT as a 2-part Julian Date
Note:

TCG1+TCG2 is Julian Date, apportioned in any convenient way between the two arguments, for example where TCG1 is the Julian Day Number and TCG2 is the fraction of a day. The returned TT1,TT2 follow suit.

References:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), .
IERS Technical Note No. 32, BKG (2004)
IAU 2000 Resolution B1.9
```

 SUBROUTINE iau_TDBTCB (TDB1, TDB2, TCB1, TCB2, J)
 *+

* - _ _ - _ _ _ _
* i a u _ T D B T C B
*
* Time scale transformation: Barycentric Dynamical Time, TDB, to
* Barycentric Coordinate Time, TCB.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical.
* Given:
* TDB1,TDB2
*
*
*
*
*
*
* i a u_T D B T T
* _ _ _ _- _ _ _ _ _ -

```
Returned:
```

 TT1,TT2 \(d\) TT as a 2-part Julian Date
 \(J \quad i \quad\) status: \(0=O K\)
 Notes:
 1) TDB1+TDB2 is Julian Date, apportioned in any convenient way
between the two arguments, for example where TDB1 is the Julian
Day Number and TDB2 is the fraction of a day. The returned
TT1,TT2 follow suit.
2) The argument DTR represents the quasi-periodic component of the GR transformation between $T T$ and TCB. It is dependent upon the adopted solar-system ephemeris, and can be obtained by numerical integration, by interrogating a precomputed time ephemeris or by evaluating a model such as that implemented in the SOFA routine iau_DTDB. The quantity is dominated by an annual term of 1.7 ms amplitude.
3) TDB is essentially the same as Teph, the time argument for the JPL solar system ephemerides.

References:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

IAU 2006 Resolution 3

* _ _ _ _ _ _ _ _ -
* * Convert hours, minutes, seconds to radians.
* This routine is part of the International Astronomical Union's * SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
* Giv
* IHOUR

IHOUR
IMIN
SEC
Returned:
RAD d angle in radians
J i status: $0=0 K$
$1=$ IHOUR outside range $0-23$
$2=$ IMIN outside range 0-59
$3=$ SEC outside range 0-59.999...
Notes:

1) If the s argument is a string, only the leftmost character is used and no warning status is provided.
2) The result is computed even if any of the range checks fail.

* 3) Negative IHOUR, IMIN and/or SEC produce a warning status, but the absolute value is used in the conversion.
*
* 4) If there are multiple errors, the status value reflects only the first, the smallest taking precedence.
* i a u_T F 2 D
* - - - - - _ - -
*
* Convert hours, minutes, seconds to days.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: support routine.
*
* Given:
* Give
* S
$\begin{array}{lll} & \text { C } & \text { sign: } \\ \text { IHOUR } & \text { i } & \text { hours }\end{array}$
* IMIN i minutes
* SEC d seconds
* Returned:
* DAYS d interval in days
* J
\star
*

\star
\star

* Notes:
*
* 1) If the s argument is a string, only the leftmost character is
\star
\star
\star
\star
* 2) The result is computed even if any of the range checks fail.
* 3) Negative IHOUR, IMIN and/or SEC produce a warning status, but the
*

\star
\star

* 4) If there are multiple errors, the status value reflects only the
\star
\star
- - - - - -
* i a u \quad T R
* _ _ _ _ _ _
*
* Transpose an r-matrix.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* $\underset{R}{\text { Given }} \quad d(3,3) \quad r$-matrix
* \quad R
* Returned:
* RT d(3,3) transpose
* Called:
* iau_CR copy r-matrix
*
*
* i a u - TRX P
* - _ - _ _ _ - - -
*
* Multiply a p-vector by the transpose of an r-matrix.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given:
* $\quad \mathrm{R} \quad \mathrm{d}(3,3) \quad r$-matrix
$\begin{array}{lll}\text { * } & \text { P } & d(3) \\ \text { a }\end{array}$
* Returned:
* TRP $d(3) \quad R * P$
*
* Called:
* iau_TR transpose r-matrix
* iau_RXP
product of r-matrix and p-vector
* - - - - - - - - - -
* i a u - T R X P V
* - - _ _ - _ - _ _ -
*
* Multiply a pv-vector by the transpose of an r-matrix.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Given.
* \quad R $\quad d(3,3) \quad r$-matrix
$\begin{array}{lll}\text { * } & \text { PV } & d(3,2) \\ \text { a } & \text { pv-vector }\end{array}$
* Returned:
* TRPV $d(3,2) \quad R * P V$
*
* Called:
* iau_TR transpose r-matrix
* iau_RXPV product of r-matrix and pv-vector
TT1,TT2 $d \quad$ TT as a 2-part Julian Date

Returned:
TAI1,TAI2 d TAI as a 2-part Julian Date J i status: $0=O K$

Note:
TT1+TT2 is Julian Date, apportioned in any convenient way between the two arguments, for example where TT1 is the Julian Day Number and TT2 is the fraction of a day. The returned TAI1, TAI2 follow suit.

References:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)
Explanatory Supplement to the Astronomical Almanac,
P. Kenneth Seidelmann (ed), University Science Books (1992)

* Status: canonical.
* Given:
\star
* Returned:
* IIITT2 is Julian Date, apportioned in any convenient way between
 the two arguments, for example where TT1 is the Julian Day Number
 and TT2 is the fraction of a day. The returned TCG1,TCG2 follow
 suit.

References:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)
IAU 2000 Resolution B1.9
DTR d TDB-TT in seconds
Returned:
TDB1,TDB2 d TDB as a 2-part Julian Date
J i status: $0=O K$
Notes:

1) TT1+TT2 is Julian Date, apportioned in any convenient way between the two arguments, for example where TT1 is the Julian Day Number and TT2 is the fraction of a day. The returned TDB1,TDB2 follow suit.
2) The argument $D T R$ represents the quasi-periodic component of the GR transformation between $T T$ and TCB. It is dependent upon the adopted solar-system ephemeris, and can be obtained by numerical integration, by interrogating a precomputed time ephemeris or by evaluating a model such as that implemented in the SOFA routine iau_DTDB. The quantity is dominated by an annual term of 1.7 ms amplitude.
3) TDB is essentially the same as Teph, the time argument for the JPL solar system ephemerides.
```
References:
```

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

IAU 2006 Resolution 3

* i a u
* ___ u__ T T U T 1
*
* Time scale transformation: Terrestrial Time, TT, to Universal Time,
* UT1.
\star
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
*
* Status: canonical.
* Given:
* Given: \quad TT1,TT2 TT as a 2-part Julian Date
* DT
DT d
Returned:
UT11, UT12 d UT1 as a 2-part Julian Date
J i status: $0=0 \mathrm{O}$
Notes:

1) TT1+TT2 is Julian Date, apportioned in any convenient way between
the two arguments, for example where TT1 is the Julian Day Number
and TT2 is the fraction of a day. The returned UT11,UT12 follow
suit.
2) The argument $D T$ is classical Delta T.
Reference:
Explanatory Supplement to the Astronomical Almanac,
P. Kenneth Seidelmann (ed), University Science Books (1992)

* _ _ _ _ _ _ _ _ _ _
*
* Time scale transformation: Universal Time, UT1, to International
* Atomic Time, TAI.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.

* Status: canonical.
* Given:
UT11, UT12 d UT1 as a 2-part Julian Date
DTA d UT1-TAI in seconds
Returned:
TAI1, TAI2 d TAI as a 2-part Julian Date
J i status: $0=O K$
Notes:

1) UT11+UT12 is Julian Date, apportioned in any convenient way
between the two arguments, for example where UT11 is the Julian
Day Number and UT12 is the fraction of a day. The returned
TAI1, TAI2 follow suit.
2) The argument DTA, i.e. UT1-TAI, is an observed quantity, and is
available from IERS tabulations.
Reference:
Explanatory Supplement to the Astronomical Almanac,
P. Kenneth Seidelmann (ed), University Science Books (1992)
DT d TT-UT1 in seconds
Returned:
TT1,TT2 $d \quad$ TT as a 2-part Julian Date
$\begin{array}{lll}\text { J } & \text { d } & \text { ir as a } 2-p a r t ~ \\ J & \text { status: } 0=O K\end{array}$
Notes:

1) UT11+UT12 is Julian Date, apportioned in any convenient way
between the two arguments, for example where UT11 is the Julian
Day Number and UT12 is the fraction of a day. The returned
TT1,TT2 follow suit.
2) The argument DT is classical Delta T.
Reference:
Explanatory Supplement to the Astronomical Almanac,
P. Kenneth Seidelmann (ed), University Science Books (1992)

* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical.
* Given:
UT11, UT12 $d \quad$ UT1 as a 2-part Julian Date (Note 1)
DUT1 d Delta UT1: UT1-UTC in seconds (Note 2)
Returned:
UTC1,UTC2 d UTC as a 2-part quasi Julian Date (Notes 3,4)
J i
status: $+1=$ dubious year (Note 5)
$0=$ OK
$-1=$ unacceptable date

Notes:

1) UT11+UT12 is Julian Date, apportioned in any convenient way between the two arguments, for example where UT11 is the Julian Day Number and UT12 is the fraction of a day. The returned UTC1 and UTC2 form an analogous pair, except that a special convention is used, to deal with the problem of leap seconds - see Note 3.
2) Delta UT1 can be obtained from tabulations provided by the International Earth Rotation and Reference Systems Service. The value changes abruptly by is at a leap second; however, close to a leap second the algorithm used here is tolerant of the "wrong" choice of value being made.
3) JD cannot unambiguously represent UTC during a leap second unless special measures are taken. The convention in the present routine is that the returned quasi JD day UTC1+UTC2 represents UTC days whether the length is 86399,86400 or 86401 SI seconds.
4) The routine iau_D2DTF can be used to transform the UTC quasi-JD into calendar dāte and clock time, including UTC leap second handling.
5) The warning status "dubious year" flags UTCs that predate the introduction of the time scale and that are too far in the future to be trusted. See iau_DAT for further details.

Called:

```
        iau_JD2CAL JD to Gregorian calendar
```

 iau_DAT delta(AT) = TAI-UTC
 iau_CAL2JD Gregorian calendar to JD
 References:

McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books

* i a u_U T C T A I
* _ _ _ _- _ _ _ _ _ -
*
* Time scale transformation: Coordinated Universal Time, UTC, to
* International Atomic Time, TAI.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical.
* Given:
UTC1,UTC2 d UTC as a 2-part quasi Julian Date (Notes 1-4)
Returned:
TAI1,TAI2 d TAI as a 2-part Julian Date (Note 5)
J i status: $+1=$ dubious year (Note 3)
0 = OK
-1 = unacceptable date
Notes:

1) UTC1+UTC2 is quasi Julian Date (see Note 2), apportioned in any
convenient way between the two arguments, for example where UTC1
is the Julian Day Number and UTC2 is the fraction of a day.
2) JD cannot unambiguously represent UTC during a leap second unless
special measures are taken. The convention in the present routine
is that the JD day represents UTC days whether the length is
86399 , 86400 or 86401 SI seconds.
3) The warning status "dubious year" flags UTCs that predate the
introduction of the time scale and that are too far in the future
to be trusted. See iau_DAT for further details.
4) The routine iau_DTF2D converts from calendar date and time of day
into 2-part Julian Date, and in the case of UTC implements the
leap-second-ambiguity convention described above.
5) The returned TAI1,TAI2 are such that their sum is the TAI Julian
Date.
Called:
iau_JD2CAL JD to Gregorian calendar
iau_DAT delta(AT) = TAI-UTC
iau_CAL2JD Gregorian calendar to JD
References:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)
Explanatory Supplement to the Astronomical Almanac,
P. Kenneth Seidelmann (ed), University Science Books (1992)
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: canonical.
* Given:

Given: UTC1, UTC2 DUT1	d	UTC as a 2-part quasi Julian Date (Notes 1-4)
d		
Delta UT1 $=$ UT1-UTC in seconds (Note 5)		

Notes:

1) UTC1+UTC2 is quasi Julian Date (see Note 2), apportioned in any convenient way between the two arguments, for example where UTC1 is the Julian Day Number and UTC2 is the fraction of a day.
2) JD cannot unambiguously represent UTC during a leap second unless special measures are taken. The convention in the present routine is that the JD day represents UTC days whether the length is 86399 , 86400 or 86401 SI seconds.
3) The warning status "dubious year" flags UTCs that predate the introduction of the time scale and that are too far in the future to be trusted. See iau_DAT for further details.
4) The routine iau_DTF2D converts from calendar date and time of day into 2-part Julian Date, and in the case of UTC implements the leap-second-ambiguity convention described above.
5) Delta UT1 can be obtained from tabulations provided by the International Earth Rotation and Reference Systems Service. It It is the caller's responsibility to supply a DUT argument containing the UT1-UTC value that matches the given UTC.
6) The returned UT11, UT12 are such that their sum is the UT1 Julian Date.
7) The warning status "dubious year" flags UTCs that predate the introduction of the time scale and that are too far in the future to be trusted. See iau_DAT for further details.

References:
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992)

Called:
iau_JD2CAL JD to Gregorian calendar
iau_DAT delta(AT) = TAI-UTC
iau_UTCTAI UTC to TAI
iau_TAIUT1 TAI to UT1

* This routine is part of the International Astronomical Union's
Returned:
X,Y C CIP X,Y coordinates (Note 2)
* 1) The TT date DATE1+DATE2 is a Julian Date, apportioned in any

[^0]* i a u _ X Y S O O A
* _ _ _ _- _ _ _ _ _ -
* For a given TT date, compute the X, Y coordinates of the Celestial
* Intermediate Pole and the CIO locator s, using the IAU 2000A
* precession-nutation model.
*
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\star
* Status: support routine.
* Given:
\star
\star
\star
* McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
 IERS Technical Note No. 32, BKG (2004)
 * i a u_X Y S O O B
* _ _ _ _-_ _ _ _ _ _
*
* For a given TT date, compute the X, Y coordinates of the Celestial
* Intermediate Pole and the CIO locator s, using the IAU 2000B
* precession-nutation model.
\star
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\star
* Status: support routine.
\star
* Given:
*
*

\star
$\begin{array}{lll}X, Y & d & \text { Celestial Intermediate Pol } \\ S & d & \text { the CIO locator } s \text { (Note 2) }\end{array}$

* Notes:
\star
*

\star
*
McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
IERS Technical Note No. 32, BKG (2004)

* i a u _ X Y S 06 A
* _ _ _ _ _ _ _ _ _ -
*
* For a given TT date, compute the X, Y coordinates of the Celestial
* Intermediate Pole and the CIO locator s, using the IAU 2006
* precession and IAU 2000A nutation models.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
\star
* Status: support routine.
* Given:
\star
\star
\star
* $\begin{array}{lll}\mathrm{X}, \mathrm{Y} & \mathrm{d} & \text { Celestial Intermediate Pol } \\ \mathrm{S} & \mathrm{d} & \text { the CIO locator } \mathrm{s} \text { (Note 2) }\end{array}$
Notes:
see Capitaine \& Wallace (2006) and iau_XY06.
Called:
iau_PNM06A classical NPB matrix, IAU 2006/2000A
iau_BPN2XY extract CIP X,Y coordinates from NPB matrix
iau_S06 the CIO locator s, given X,Y, IAU 2006
References:
Capitaine, N. \& Wallace, P.T., 2006, Astron.Astrophys. 450, 855
Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981

The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date \& time methods are both good compromises between resolution and convenience.
2) The Celestial Intermediate Pole coordinates are the x, y components of the unit vector in the Geocentric Celestial Reference System. Intermediate Origin on the equator of the CIP. see Capitaine \& Wallace (2006) and iau_XY06.

Called:
iau_PNM06A classical NPB matrix, IAU 2006/2000A iau_S06 the CIO locator s, given X,Y, IAU 2006

References:
Capitaine, N. \& Wallace, P.T., 2006, Astron.Astrophys. 450, 855 Wallace, P.T. \& Capitaine, N., 2006, Astron.Astrophys. 459, 981 -

- - - - - - -
* i a u _ Z P
* _ _ _ _ _ -
*
* Zero a p-vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Returned:
* P d(3) p-vector
*

*-

* - - - - - - - -
* i a u \quad Z P V
* _ _ _ _ _ _ _ -
*
* Zero a pv-vector.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Returned:
* PV $d(3,2)$ pv-vector
*
* Called:
* iau_ZP zero p-vector
* - - - - - - -
* i a u \quad Z R
* _ _ _ _ _ - -
*
* Initialize an r-matrix to the null matrix.
* This routine is part of the International Astronomical Union's
* SOFA (Standards of Fundamental Astronomy) software collection.
* Status: vector/matrix support routine.
* Returned:
* $\quad \mathrm{R}$ d $(3,3) \quad r$-matrix
*
*

COPYRIGHT NOTICE

Text equivalent to the following appears at the end of every SOFA routine. (There are small formatting differences between the Fortran and C versions.)

```
* Copyright (C) }201
```

* Standards Of Fundamental Astronomy Board
* of the International Astronomical Union.
\star
\star
\star
* =====================
* SOFA Software License
\star
* NOTICE TO USER:
*
* BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
* CONDITIONS WHICH APPLY TO ITS USE.
*
* follows:

By email: sofa@ukho.gov.uk
By post: IAU SOFA Center
HM Nautical Almanac Office
UK Hydrographic Office
Admiralty Way, Taunton
Somerset, TA1 2DN
United Kingdom

SOFA Fortran constants

These must be used exactly as presented below.

* Pi

DOUBLE PRECISION DPI
PARAMETER (DPI = 3.141592653589793238462643D0)

* 2 Pi

DOUBLE PRECISION D2PI
PARAMETER (D2PI $=6.283185307179586476925287 \mathrm{D} 0$)

* Radians to hours

DOUBLE PRECISION DR2H
PARAMETER ($\mathrm{DR} 2 \mathrm{H}=3.819718634205488058453210 \mathrm{DO}$)

* Radians to seconds

DOUBLE PRECISION DR2S
PARAMETER (DR2S = 13750.98708313975701043156D0)

* Radians to degrees

DOUBLE PRECISION DR2D
PARAMETER ($\mathrm{DR} 2 \mathrm{D}=57.29577951308232087679815 \mathrm{D} 0$)

* Radians to arc seconds

DOUBLE PRECISION DR2AS
PARAMETER (DR2AS $=206264.8062470963551564734 D 0)$

* Hours to radians

DOUBLE PRECISION DH2R
PARAMETER ($\mathrm{DH} 2 \mathrm{R}=0.2617993877991494365385536 \mathrm{DO}$)

* Seconds to radians

DOUBLE PRECISION DS2R
PARAMETER ($\mathrm{DS} 2 \mathrm{R}=7.272205216643039903848712 \mathrm{D}-5$)

* Degrees to radians

DOUBLE PRECISION DD2R
PARAMETER (DD2R $=1.745329251994329576923691 \mathrm{D}-2$)

* Arc seconds to radians

DOUBLE PRECISION DAS2R
PARAMETER (DAS2R $=4.848136811095359935899141 \mathrm{D}-6$)

SOFA C constants

The constants used by the C version of SOFA are defined in the header file sofam.h.

IAU STANDARDS OF FUNDAMENTAL ASTRONOMY BOARD

```
Current Membership
    John Bangert
    Steven Bell
    Mark Calabretta
    Nicole Capitaine
    William Folkner
    George Hobbs
    Catherine Hohenkerk
    Wen-Jing Jin
    Brian Luzum
    Zinovy Malkin
    Jeffrey Percival
    Patrick Wallace
    United States Naval Observatory
    Her Majesty's Nautical Almanac Office
    Australia Telescope National Facility
    Paris Observatory
    Jet Propulsion Laboratory
    Australia Telescope National Facility
    Her Majesty's Nautical Almanac Office (Chair)
    Shanghai Observatory
    United States Naval Observatory (IERS)
    Pulkovo Observatory, St Petersburg
    University of Wisconsin
    Rutherford Appleton Laboratory
Past Members
    Wim Brouw University of Groningen
    Anne-Marie Gontier
    George Kaplan
    Dennis McCarthy
    Skip Newhall
    Paris Observatory
    United States Naval Observatory
    United States Naval Observatory
    Jet Propulsion Laboratory
The e-mail for the Board chair is Catherine.Hohenkerk@ukho.gov.uk
```


[^0]: References:

